

Multi-Cloud Handbook
for Developers

Learn how to design and manage cloud-native applications in
AWS, Azure, GCP, and more

Subash Natarajan

Jeveen Jacob

Multi-Cloud Handbook for Developers
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Preet Ahuja
Publishing Product Manager: Surbhi Suman
Book Project Manager: Ashwin Kharwa
Senior Editor: Roshan Ravi Kumar
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Gokul Raj S.T
Senior DevRel Marketing Coordinator: Linda Pearlson
DevRel Marketing Coordinator: Rohan Dobhal

First published: February 2024

Production reference: 1160224

Published by
Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-80461-870-7

www.packtpub.com

http://www.packtpub.com

None of my accomplishments would have been possible without my remarkable support system. To
my wife, Kavitha, my unwavering pillar of strength, and to my son, Vivan, who selflessly sacrificed

our playtimes to help me focus on writing – I owe him a world of thanks. A special note of profound
thanks to my mom and dad – your unwavering belief in me and endless encouragement have been the

cornerstone of my journey.

To my mentors, colleagues, and friends – thank you for being relentless fountains of inspiration
and support.

Additionally, a heartfelt appreciation to the developer and cloud communities for fueling my passion
for this book, and to the Packt team for their invaluable assistance and support throughout

this process.

– Subash Natarajan

This book is fondly dedicated to my beloved mother, Valsamma, whose love and guidance are my
constant light, and to the cherished memory of my father, P O Jacob, whose legacy continues to inspire.
To Jeril’s family, Sherin and Irene, for their warmth. To my dear wife, Jincy, and our precious daughter,

Jenny – your unwavering support and encouragement have been my stronghold throughout this
journey. Your sacrifices have not gone unnoticed and have made all of this possible.

Also, I extend my deepest gratitude to my friends, colleagues, the vibrant developer communities, and
the dedicated team at the publishing house. Your invaluable support and expert guidance have been

pivotal in bringing this work to fruition.

– Jeveen Jacob

Contributors

About the authors
Subash Natarajan is a renowned tech strategist, standing at the forefront of software engineering,
advisory, and technical leadership. With a keen focus on system integration, automation, and
transformations, he has masterfully steered numerous enterprises through their digital evolution,
seamlessly aligning IT frameworks with broad business visions.

Subash's deep insight into digital and emerging tech is reflected in his influential writings, which shed
light on digital adoption and the transformative journey of businesses. Celebrated for his innovative
tactics in navigating complex tech challenges, Subash's commitment to spreading knowledge and
striving for excellence has made him a pivotal figure in the tech landscape.

Jeveen Jacob is a seasoned expert in software and cloud technologies. His career, blossoming from
hands-on software development to strategic roles in cloud services, DevSecOps, and site reliability
engineering, showcases his adaptability and impact. Jeveen's proficiency lies in tailoring a broad skill set
to meet the unique demands of diverse clients, marking him as a versatile and influential professional.

Jeveen's proactive embrace of cloud-native and cutting-edge tech has made him a trailblazer in the
field. He is adept at leading organizations to innovative, user-friendly digital solutions, transforming
intricate tech into practical tools for business triumph.

About the reviewer
Mario Palma Parra has worked as a cloud architect and in DevOps for over seven years, six years of
which were specifically dedicated to working as a cloud trainer. He has performed cloud proposals,
architectural designs, documentation, training, migrations, operational definitions, business-specific
training, and continuous improvement for cloud and hybrid-related environments for both private
companies and government-related entities. He holds several AWS-, Azure-, and DevOps-related
certifications. He is currently employed as a senior cloud architect/DevOps engineer for Vodafone Europe.

I’d like to thank my family and friends, especially Arturo Mardones, for believing in me when no one
else did. Also, moving from Chile to Portugal was a risk but also something necessary to continue my
professional development, and all this would not be possible without the supportive cloud community
that has developed over the last several years. Thank you to all the kindred spirits who make this an
exciting field to work in each and every day.

Preface xv

Part 1: Introduction to Multi-Cloud
and Cloud-Native

1
Discovering the Multi-Cloud and Cloud-Native Universe 3

The evolution of
application development 4
The monolithic era 4
The advent of SOA 4
Microservices and containers 5

The rise of cloud computing 5
Cloud computing service categories 7
Benefits of cloud computing 7

The emergence of multi-cloud and its
distinction from hybrid cloud 8
Multi-cloud versus hybrid cloud 8

 Understanding the significance of multi-cloud 9
Challenges of multi-cloud 10

Evolution of cloud-native development 11
The cloud-native advantage 12
Overcoming cloud-native challenges 12
When cloud-native meets multi-cloud 13

The synergy between cloud-native
and multi-cloud 13
Overcoming challenges 14

The cultural shift in development 16
Summary 17

2
Building the Backbone of Cloud-Native Applications 19

The cloud-native stack 19
Principles of cloud-native architecture 21
The Twelve-Factor App – a quick walk-through 21

Microservices architecture 25
Statelessness and immutability 27
APIs and service discovery 27
Scalability and elasticity 29

Table of Contents

Table of Contentsviii

Resilience and fault tolerance 29

Cloud-native application architecture 30

Components of a cloud-native
application – the building blocks 30

Summary 33

Part 2: Designing and Developing Cloud-Native
Applications for Multi-Cloud

3
Designing for Diversity with Multi-Cloud Application Strategies 37

Cloud-native design patterns 38
Designing for multi-cloud 52
Understanding multi-cloud architecture 52
Key principles of multi-cloud application design 54

Role of domain-driven design 55
Importance of an API-first approach 56
Selecting the right technologies for a
cloud-native foundation 57
Data management in multi-cloud 58
Monitoring and observability
in multi-cloud 60

Optimizing costs in multi-cloud 61
Case studies 61
Case Study 1: E-commerce platform using
microservices and sharding 62
Case Study 2: Financial services firm
leveraging circuit breaker and replication 63
Case Study 3: Media streaming company
adopting eventual consistency and API gateway 64

Best practices for multi-cloud
application design 65
Summary 66

4
Crafting and Deploying in the Multi-Cloud as a Developer 67

IaC 68
Strengths of IaC 69
Weaknesses of IaC 70
Tools to implement IaC 70

CI/CD 72
CI/CD best practices 75

Scaling mountainous success – a tale
of DevOps and GitOps 78
Challenges 80

Service meshes in
multi-cloud environments 82
Containerization and orchestration 85
Containerization 85
Kubernetes 88

Multi-cloud networking and security 92
Summary 93

Table of Contents ix

Part 3: Managing and Operating Cloud-Native
Apps in Multi-Cloud

5
Managing Security, Data, and Compliance on Multi-Cloud 97

Managing data and security in multi-
cloud environments 98
Understanding data security and privacy
in multi-cloud 98
Data residency and sovereignty 99
Automated compliance checks and
data portability 99
Implementing best practices for data protection 99
Data privacy and compliance considerations 101

Introduction to security in cloud-
native multi-cloud environments 102
CIS benchmarks 104
CSA framework 104

DevSecOps best practices for
cloud-native apps in
multi-cloud environments 105
Integrating security into the DevOps workflow 105

Automation and configuration management
for secure deployments 106
Ensuring secure development practices 107

Managing compliance across
multiple clouds environments 108
Understanding the compliance landscape in
multi-cloud environments 109
Implementing governance frameworks
and controls 110

IAM across multiple
clouds environments 112
Centralized IAM 113
MFA and secure access 114

Data privacy and protection 116
Understanding data privacy requirements 116
Implementing data privacy controls 117

Summary 120

6
Maximizing Value and Minimizing Cost in Multi-Cloud 121

The shift-left cost for development in
multi-cloud 122
FinOps practices for cloud-native
apps in multi-cloud 122
Implementing shift-left cost
management and FinOps practices 125
Shifting costs left – prevention is key 125

FinOps – collaboration is the secret sauce 125
The rewards of a cost-conscious mindset 126

Optimizing cloud resources and
minimizing waste 127
Selecting the right cloud provider
based on cost and performance 130
Evaluating cloud providers – cost factors and

Table of Contentsx

performance metrics 130
Performance and reliability metrics 131
Data management cost strategies 132

Governance and cost control 134
Cloud provider comparison
case studies 135

Case study 1 – eCommerce giant slashes costs
by 50% with a multi-cloud
microservices approach 135
Case study 2 – social media app optimizes
costs by 30% with containers and automation 136

Summary 137

7
Troubleshooting Multi-Cloud Applications 139

Challenges of troubleshooting cloud-
native applications 141
Tips for troubleshooting
cloud-native applications 142
Use a centralized monitoring tool 142
Choosing a centralized monitoring tool for
your needs 143
Use a cloud-native logging tool 144
Use a cloud-native debugging tool 145
Use a cloud-native observability platform 147
Use a service mesh 148
Choosing the right service mesh for your needs 149
Use a cloud-native configuration
management tool 150

Establishing an effective
troubleshooting process for
cloud-native applications 152
Step 1 – Detecting the issue 152

Step 2 – Isolate the problem 153
Step 3 – Analyze and diagnose 154
Step 4 – Create, test, and deploy the solution 155
Step 5 – Learn from the experience and
document 155
Step 6 – Continuous improvement 156

Case studies 157
Case study 1 – Streamlining microservices
communication in multi-clouds 157
Case study 2 – Managing data consistency in
a multi-cloud environment 158
Case study 3 – Scaling challenges in a multi-
cloud environment 159

SRE in multi-cloud environments 160
The principles of SRE 160
The benefits of SRE 162

Chaos engineering 163
Summary 165

Table of Contents xi

Part 4: Best Practices, Case Studies, and Future
Trends for Multi-Cloud and Cloud-Native

8
Learning from Pioneers and Case Studies 169

Real-world case studies 170
Capital One – accelerating decision-making
applications with Kubernetes 170
Ygrene – using cloud-native tech to bring
security and scalability to the finance industry 172
T-Mobile – scaling up for peak with Kubernetes 173
Uber – cloud-native transformation for agility 175

 Deployment strategies and best

practices 176
Deployment strategies 176

Lessons learned and
recommendations 181
Lessons learned 181
Recommendations for future projects 182

Summary 184

9
Bringing Your Cloud-Native Application to Life 185

Project planning 185
Designing cloud-native applications
for multi-cloud 188
Designing a cloud-native application on
multi-cloud 190
Building your cloud-native application 192

Practical examples: building effective
cloud-native applications 194
Deployment best practices 195
Security best practices
for deployment 198
Load testing and
performance optimization 199

Performing load testing and
performance optimization 200

Troubleshooting and optimization 200
Optimization and scaling 201
Cost-optimization strategies 202
Scalability and elasticity 203
Performance monitoring and tuning 204

Hands-on exercise: e-commerce in
multi-cloud architecture 205
Summary 211

Table of Contentsxii

10
Future-Proofing Your Cloud Computing Skills 213

Next-generation cloud-native
infrastructure and platforms 214
Evolution of platform engineering 214

The rise of immutable infrastructure
and its implications 215
Spotify’s immutable infrastructure strategy 216
Advanced orchestration in
multi-cloud landscapes 216

Introduction to AI and ML in cloud-
native evolution 217
Modernizing applications with GenAI 217
The cloud-native platform becomes a
foundational pillar for GenAI 221
ML – a pivotal tool in advanced cloud-native
application management 224
Predictive analytics and AIOps – redefining
cloud resource management 225
Predictions for AI and ML in
cloud-native development 227

The emergence of serverless
architecture and EDA 228
The evolution and future of FaaS in cloud-
native ecosystems 228
Real-time processing and IoT integration in
multi-cloud environments 229
Case studies of serverless architectures in
large-scale applications 229

Advanced security paradigms for
cloud-native applications 230
Reimagining security – the advent of Zero
Trust in multi-cloud environments 230
Harnessing AI and ML – the vanguard of
cloud-native cybersecurity 232
Navigating future security frontiers in cloud-
native ecosystems 232

Quantum computing (QC) and its
impact on cloud technologies 233
QC – revolutionizing the cloud landscape 233
Example of QC 234
Navigating the quantum future in
cloud computing 234
Strategic recommendations 235

Sustainable cloud
computing – a new era 235
Green computing – the heart of future cloud-
native development 235
Energy-efficient strategies in
multi-cloud infrastructures 236
Case studies of sustainable practices in
cloud computing 237
Strategic imperatives for a green cloud horizon 238
Embracing a sustainable future in
cloud computing 238

The convergence of telco and edge
computing with cloud-native 238
5G as a game-changer for edge-enhanced
cloud applications 239
Managing distributed data in multi-cloud and
edge environments 239
Future trends in edge and
cloud-native integrations 240

Blockchain integration with cloud-
native development 240
Understanding blockchain in a
cloud-native context 240

The rise of LC/NC platforms 242
LC/NC platforms in modern
application developments 243
Challenges and considerations 243
The future outlook 244

Table of Contents xiii

Cloud-native governance and
compliance in the future 244
Navigating evolving regulatory landscapes 245
Automated compliance and governance tools 245
Best practices for maintaining compliance in
dynamic environments 245

Conclusion – preparing for a
cloud-native future 246

Envisioning the future – a tapestry of
advancements and challenges 246
The imperative of continuous learning
and adaptation 247
Championing lifelong learning 248
Cultivating a forward-looking mindset 251

Summary 252

Index 253

Other Books You May Enjoy 268

Preface

Welcome to this comprehensive guide on cloud-native development in multi-cloud environments, a
crucial nexus in modern technology. This book is crafted to demystify the complexities and help you
leverage the opportunities presented by the multi-cloud and cloud-native paradigms. This book will
help cut through the technical jargon and simplify complex concepts, using engaging metaphors to
bring clarity to the fast-moving cloud space.

We will start off in understanding the essentials of multi-cloud and cloud-native technologies by
breaking them down into simpler terms. From then on, this book will set stage for a deeper dive into
the architectural principles of cloud-native applications, highlighting the critical role of microservices,
serverless computing, and other foundational concepts. Subsequent chapters guide you through the
intricacies of designing, developing, and deploying applications across multiple cloud platforms,
emphasizing best practices and modern tooling.

Addressing the core challenges in this domain, the book covers data management, security, compliance,
and cost optimization in multi-cloud environments. Furthermore, it equips you with strategies and
techniques for troubleshooting, ensuring the resilience and reliability of cloud-native applications.

We will also explore real-life and sample use cases, providing a firsthand perspective on genuine cloud
success stories and valuable lessons from diverse industries. The final chapters of the book project
into the future, exploring emerging trends and technologies that are set to shape the landscape of
cloud computing.

Who this book is for
Targeted at cloud-native developers, platform engineers, and IT specialists, this manual is pivotal for
those overseeing cloud-native applications across diverse cloud infrastructures. It’s crafted for individuals
with foundational cloud knowledge eager to deepen their skills in cloud architecture, development,
and operations. The content assumes familiarity with fundamental cloud principles, experience with
major cloud services, and proficiency in a programming language, underpinning a practical approach
to mastering modern application development within a multi-cloud context.

What this book covers
Chapter 1, Discovering the Multi-Cloud and Cloud-Native Universe, looks into the core concepts of
multi-cloud and cloud-native technologies, highlighting their advantages and alerting you to possible
hurdles. The chapter will provide a clear overview of how cloud-native and multi-cloud approaches
work together, underlining their significance in today's cloud-computing landscape.

Prefacexvi

Chapter 2, Building the Backbone of Cloud-Native Applications, explores the essential principles and
structures that define cloud-native applications. The chapter will also guide you through microservices,
serverless frameworks, and the 12-factor app model, ensuring you have a solid foundation for
architecting in the cloud.

Chapter 3, Designing for Diversity with Multi-Cloud Application Strategies, helps you tailor your designs
for operation across multiple cloud environments. This chapter reveals the secrets behind robust
application design that transcends the boundaries of individual clouds.

Chapter 4, Crafting and Deploying in the Multi-Cloud as a Developer, helps you understand the full
arc from development to deployment in a multi-cloud context. You'll also gain insights into creating
cloud-native applications using infrastructure as code and integrating continuous integration and
deployment into your workflow.

Chapter 5, Managing Security, Data, and Compliance on Multi-Cloud, helps you secure your cloud-
native applications against the backdrop of varying multi-cloud landscapes. This chapter will empower
you with best practices for managing data, enhancing security, and meeting compliance standards.

Chapter 6, Maximizing Value and Minimizing Cost in Multi-Cloud, guides you in understanding the art
of cost optimization for cloud-native applications in multi-cloud environments. You will also discover
how to apply FinOps principles and right-size your cloud resources without sacrificing efficiency.

Chapter 7, Troubleshooting Multi-Cloud Applications, equips you with strategies and techniques to
untangle the complexities of troubleshooting in multi-cloud setups. You will learn how to maintain
reliability and resilience with insights into SRE and DevOps best practices.

Chapter 8, Learning from Pioneers and Case Studies, provides lessons from those who've triumphed
in the cloud. Through case studies and real-world examples, this chapter shares the successes and
strategies of companies that have effectively harnessed the power of multi-cloud and cloud-native
technologies. You will gain valuable lessons and proven practices to guide your own cloud journey.

Chapter 9, Bringing Your Cloud-Native Application to Life, dives into the nitty-gritty of cloud-native
development with a sample project! You'll learn how to plan, design, implement, and scale a real-
world application across different cloud providers. Get ready to roll up your sleeves and put your
cloud skills to the test!

Chapter 10, Future-Proofing Your Cloud Computing Skills, explores what's next for multi-cloud and
cloud-native applications, including new trends, upcoming technologies, and how AI and other
advancements are driving cloud innovation forward.

Starting from a basic-to-intermediate level of understanding, readers can explore and gain insights
into the latest and upcoming developments in the world of multi-cloud and cloud-native applications.

Preface xvii

To get the most out of this book
You will need to have an understanding of the basic components of a cloud platform and of the IT
application development process, administration, support, and monitoring.

Software/hardware covered in the book Operating system requirements
Node.js v9.8.1 Windows, macOS, or Linux
Docker v24.07 Windows, macOS, or Linux
Terraform v1.6.5 Windows, macOS, or Linux
Jenkins v2.435 Windows, macOS, or Linux
Amazon Web Services (AWS) Windows, macOS, or Linux
Microsoft Azure Windows, macOS, or Linux
Google Cloud Platform (GCP) Windows, macOS, or Linux

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Multi-Cloud-Handbook-for-Developers. If there’s an update to
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example:
“require('dotenv').config();: This line loads environment variables from an if .env
is process.env.

A block of code is set as follows:

require('dotenv').config();
const port = process.env.PORT || 3000;

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “We’ll start with Infrastructure as
Code (IaC), an approach that allows you to automate the provisioning and management of your
cloud resources.”

https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers
https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexviii

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Multi-Cloud Handbook for Developers, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-804-61870-5

Preface xix

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80461-870-7

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-80461-870-7

Part 1:
Introduction to Multi-Cloud

and Cloud-Native

In this foundational part, we explore the essentials of multi-cloud and cloud-native technologies.
Here, you’ll comprehensively understand the current landscape, including the numerous benefits and
challenges these technologies present. This part is designed to provide clarity on what multi-cloud
and cloud-native really mean and their significance in today’s tech-driven world. Furthermore, it
delves into the principles and architecture of cloud-native applications, covering pivotal topics such
as microservices, serverless computing, and 12-factor applications. This sets a solid foundation for
understanding cloud-native application architecture and design principles, preparing you to harness
these technologies effectively.

This part has the following chapters:

• Chapter 1, Discovering the Multi-Cloud and Cloud-Native Universe

• Chapter 2, Building the Backbone of Cloud-Native Applications

1
Discovering the Multi-Cloud

and Cloud-Native Universe

Welcome, fellow developers, to the exciting multi-cloud and cloud-native development world! As you
know, the software development landscape is ever-changing, and staying ahead of the curve means
embracing the latest trends and technologies. Two significant IT transformations have taken center
stage in recent years: multi-cloud and cloud-native development. You must be probably curious about
what these buzzwords mean and how they can help you create better, more efficient applications.
Well, you’re in the right place! As we embark on this journey, we’ll stroll down memory lane with the
evolution of application development and the pivotal role of cloud computing in ushering in the era of
multi-cloud and cloud-native strategies. Then, we’ll delve deeper into these concepts, enriching your
understanding with real-world examples and addressing common challenges to help you fully grasp their
implications on application design and delivery. With this solid foundation, you’ll be better equipped
to harness the power of multi-cloud and cloud-native technologies to create innovative, efficient, and
impactful applications. So, without further ado, let’s dive in and uncover the transformative potential
of multi-cloud and cloud-native development!

The following topics will be covered in this chapter:

• The evolution of application development

• The rise of cloud computing

• The emergence of multi-cloud and its distinction from hybrid cloud

• The evolution of cloud-native development

• The synergy between cloud-native and multi-cloud

• The cultural shift in development

Discovering the Multi-Cloud and Cloud-Native Universe4

The evolution of application development
The evolution of application architecture has seen a shift from integrated monolithic structures to the
decoupled services of service-oriented architecture (SOA), leading up to today’s microservices and
containers. These advancements prioritize flexibility and efficient, independent deployment, reshaping
software development in the cloud era. Let’s explore each one.

The monolithic era

In the early days of computing, when applications were developed as monolithic architectures, every
functionality was bundled together in a single application. The waterfall approach was king, with each
development phase (requirements, design, implementation, testing, deployment, and maintenance)
occurring sequentially. The advantage of monolithic applications was their simplicity as developers
could easily understand the entire application and its dependencies. However, monolithic architectures
had significant drawbacks:

• Limited scalability: Scaling monolithic applications took time as increasing capacity often
required adding hardware or duplicating the entire application stack

• Rigidity: Making changes to monolithic applications was time-consuming as any modification
required retesting and redeploying the entire application

• Slow release cycles: Due to the waterfall approach, it took longer to deliver new features and
bug fixes since each development phase had to be completed before the next could begin

To overcome the limitations of monolithic architectures, developers began to adopt SOA in the
early 2000s.

The advent of SOA

SOA is an architectural style that structures an application as a collection of loosely coupled, reusable
services. These services communicate with each other using standard protocols and can be combined
to create composite applications. The key advantages of SOA include the following:

• Reusability: Services can be reused across different applications, reducing development time
and effort

• Modularity: Applications can be broken down into smaller, more manageable components,
making it easier to maintain and update individual services

• Agility: Changes to one service do not require modifications to other services, allowing for
faster release cycles

While SOA helped solve some challenges of Monoliths, it also comes with drawbacks, such as the
increased complexity of managing and coordinating multiple services and the overhead introduced
by the communication protocols between services.

The rise of cloud computing 5

Microservices and containers

Microservices, an evolution of SOA, are small, independent services that can be developed, deployed,
and scaled independently. They communicate with each other via lightweight protocols such as HTTP/
REST or message queues. Microservices offer several advantages over monolithic architectures and
traditional SOA, including the following:

• Improved scalability: Each microservice can be scaled independently, allowing more efficient
resource utilization

• Faster release cycles: Smaller code bases and independent deployment make delivering new
features and bug fixes easier

• Better fault isolation: If a microservice fails, it is less likely to impact the entire application,
improving overall system resilience

Containers, another key technology in the cloud-native landscape, provide a lightweight, portable
way to package and deploy applications and their dependencies. Containers isolate applications from
the underlying infrastructure, enabling them to run consistently across different environments. This
isolation simplifies deployment and scaling, making containers perfect for microservices-based
architectures. We will learn more details about this topic in upcoming chapters.

Figure 1.1 depicts the evolution from monolithic, where components are interdependent, to SOA,
which introduces a service-based structure, and finally to microservices, where services are fully
independent, embodying cloud-native flexibility and scalability:

Figure 1.1 – The evolution from monolithic to microservices-based systems

The rise of cloud computing
Lets take a moment to rewind the history of cloud computing, where cloud computing is a narrative
of technological progress and conceptual breakthroughs. Time-sharing in the 1960s pioneered the
efficient use of computer resources, but the real transformation began with the digital revolution of
the 1990s, with the maturity of virtual machines and the early appearance of cloud computing. The

Discovering the Multi-Cloud and Cloud-Native Universe6

internet’s proliferation enabled the application service provider (ASP) model to thrive, offering
software solutions remotely. This model matured into Software-as-a-Service (SaaS), providing software
on-demand via the internet, and later in the cloud, erasing the need for local installations. The journey
continued with the creation of Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS),
both of which further distanced software developers from the complexities of physical servers.

Note
The ASP model refers to provisioning software solutions via the internet. In this model,
software applications are hosted remotely by the provider and made available to customers
over a network, typically the internet.

Figure 1.2 represents timeline charts of key milestones in cloud computing’s history: from the 1960s’
mainframe computing and the 1972 internet emergence to the 1990s’ virtual machines by VMware and
web services. The 2000s introduced AWS’s S3/EC2 services, followed by Google Apps and Microsoft
Azure, culminating in the 2010s with the Office 365 SaaS offering and Docker’s containerization in 2020:

Figure 1.2 – Cloud computing timeline

These cloud-based services provided scalable and elastic infrastructure and development platforms,
catalyzing the shift toward more agile, responsive, and cost-effective software development paradigms.
This trajectory set the stage for today’s cloud-native applications, which are designed from the ground
up to harness the distributed, service-oriented nature of the modern cloud.

Cloud computing solutions come tied with new software development practices, paradigms, and
cycles. Automated cycles for building, deploying, and testing distributed and modular software have
catalyzed the appearance of cloud-based services orbiting each of the software development and
deployment phases.

The rise of cloud computing 7

Cloud computing service categories

Upon exploring cloud service models, we find SaaS for software access, PaaS for development platforms,
and IaaS for infrastructure. These models form the foundation of cloud computing, addressing diverse
digital needs. Let’s explore them further:

• SaaS: This is a distribution model where applications are hosted by a third-party provider
and accessed by customers via the internet. In this model, the service provider takes care of
hosting software applications and their corresponding data and ensures optimal execution
by providing operating systems and underlying dependencies. Examples include Salesforce,
NetSuite, and Concur.

• PaaS: This is a model where a third-party provider hosts application development platforms
and tools on its infrastructure that can be accessed by customers via the internet. Compared
to SaaS models, PaaS providers take less responsibility for software applications but are more
committed to serving the operating system and its middleware. Examples include AWS Elastic
Beanstalk, Google App Engine, and Heroku.

• IaaS: This is a model where a third-party provider hosts servers, storage, and various virtualized
computing resources by offering them to customers via the internet. IaaS takes care of less
abstract requirements, including networking, data handling, computing power, and ensuring
virtualization layers. Examples include AWS, Microsoft Azure, and Google Compute Engine.

Benefits of cloud computing

There are many benefits of cloud computing if it is used right. In general, cloud computing has
revolutionized the way we store, access, and process data. It offers a plethora of benefits for individuals
and businesses alike, making it a preferred choice for modern computing needs.

The evolution and specialization of cloud computing techniques eventually matured to offer several
benefits over traditional on-premises infrastructure, including the following:

• Scalability: Cloud services can be easily scaled up or down based on the demand, allowing
applications to accommodate fluctuating workloads without overprovisioning resources

• Cost-effectiveness: Organizations can pay for only the resources they use, eliminating the need
for upfront investments in hardware and software

• Flexibility: Cloud providers offer a wide range of services that can be used to build and deploy
applications, enabling developers to choose the best tools and platforms for their specific needs

• Security and Compliance: Cloud providers often invest heavily in maintaining state-of-the-
art security measures and compliance certifications, allowing organizations to leverage these
protections for their applications and data

Discovering the Multi-Cloud and Cloud-Native Universe8

In addition to these advantages, cloud computing has democratized access to cutting-edge technologies
such as machine learning, artificial intelligence, and big data analytics. By providing these capabilities
as managed services, cloud providers have made it easier for developers to integrate advanced features
into their applications, further driving innovation and growth in the software industry.

Consider the case of a start-up who wants to launch a new e-commerce platform. By leveraging cloud
computing, the start-up could quickly and cost-effectively build, deploy, and scale its application
without significant upfront investments in infrastructure or long-term commitments to a specific
technology stack. This ability to rapidly adapt and grow would become invaluable as the business scale
and customer needs evolve, demonstrating the power of cloud computing in driving innovation and
efficiency in application development.

With such similar cases, cloud computing was bringing undeniable benefits to many businesses, which
gave it the momentum to be ever-growing and further specialized to precisely meet evolving business
needs. As businesses continued to adopt cloud computing within their operations, new specialized
forms of cloud deployment models began to emerge, such as hybrid and multi-cloud deployments.
This will be explored in more detail in the next section.

The emergence of multi-cloud and its distinction from
hybrid cloud
With businesses increasingly embracing cloud services, they began recognizing the potential benefits
of not being tied to a single cloud provider for their diverse application and business needs. This insight
led to the emergence of multi-cloud: a strategy that leverages multiple cloud service providers to
address the unique requirements of an application or organization. In this section, we’ll delve into the
factors that inspired developers to adopt multi-cloud strategies, the primary advantages it offers from
a developer’s standpoint with the support of platform engineers, and the challenges they encounter
when implementing a multi-cloud approach. We will also briefly distinguish multi-cloud from the
related concept of hybrid cloud.

Multi-cloud versus hybrid cloud

Before diving into multi-cloud details, it is essential to understand the difference between multi-cloud
and hybrid cloud since they are related but distinct concepts. Multi-cloud refers to using multiple cloud
service providers to fulfill different aspects of an application or organization’s needs. In contrast, a hybrid
cloud combines different public cloud services with private cloud or on-premises infrastructure. A
hybrid cloud enables developers to maintain sensitive data and applications in a private or on-premises
environment while leveraging public cloud services’ scalability and cost benefits for other workloads.

Though the two concepts differ, some developers may adopt a hybrid multi-cloud strategy for their
applications by combining public and private clouds from multiple providers to meet their specific
needs and application and business expectations. This approach offers both hybrid and multi-cloud
strategy benefits, providing greater flexibility, cost optimization, and risk mitigation.

The emergence of multi-cloud and its distinction from hybrid cloud 9

Note
Throughout this section, we will primarily focus on the multi-cloud concept while ensuring
that the information and discussions provided apply to hybrid and multi-cloud cloud models.

• Private cloud (on-premises): A secure, proprietary network or a data center that supplies hosted
services to a limited number of people, with certain access and permissions settings

• Public cloud: Computing services offered by third-party providers over the public internet,
making them available to anyone who wants to use or purchase them

• Hybrid cloud: An environment that uses a mix of on-premises, private cloud, and public cloud
services with orchestration between the two platforms, allowing for greater flexibility and
optimization of existing infrastructure

• Multi-cloud: The use of multiple cloud computing services from different providers in a single
heterogeneous architecture, to reduce reliance on any single vendor, increase flexibility, and
mitigate against disasters

Figure 1.3 delineates the nuances between the following:

Figure 1.3 – Understanding the different cloud deployment models.

 Understanding the significance of multi-cloud

As developers of the different organizations gained experience working with cloud services, they
started to see the value of leveraging multiple cloud providers to address their application and business
needs. This realization sparked the adoption of multi-cloud strategies, which involve using multiple
cloud service providers to achieve a range of objectives.

Several factors contributed to the rise of multi-cloud, including the following:

• Avoid vendor lock-in: Developers who rely on a single cloud provider can find it challenging
to switch to another provider or adopt new technologies in the future for the application
demands. Typically, multi-cloud strategies help developers avoid this lock-in by using a mix
of cloud services from different providers, enabling greater flexibility and freedom to innovate.

Discovering the Multi-Cloud and Cloud-Native Universe10

• Cost optimization: Each cloud provider has a pricing model and offers unique services and
features. By using multiple cloud providers, developers can optimize costs by choosing the best
services for their specific needs and taking advantage of price differences between providers,
if this is done correctly.

• Performance and latency improvements: Using multiple cloud providers can improve
application performance by distributing workloads across data centers and geographical
locations, reducing end user latency.

• Compliance and regulatory requirements: Developers may need to comply with specific
data residency or regulatory requirements that dictate where data can be stored and processed.
Multi-cloud strategies enable developers to choose cloud providers that meet these requirements
while still benefiting from the advantages of cloud computing.

• Risk mitigation and business continuity: Relying on a single cloud provider can pose
risks in case of provider-specific outages or service disruptions. Multi-cloud strategies help
developers mitigate these risks by distributing workloads across multiple providers, ensuring
application resilience.

Challenges of multi-cloud

While implementing a multi-cloud strategy offers numerous advantages, developers, along with
platform engineers (who manage the underlying platform for modern applications), must also navigate
a unique set of challenges. In this section, we’ll discuss some critical hurdles developers may face
during multi-cloud implementation and provide insights on overcoming them effectively:

• Increased complexity: Managing multiple cloud providers adds complexity to development
and operations as developers must deal with different management interfaces, APIs, and service
offerings, where still platform engineers play the role of simplifying these complexities.

• Security and compliance concerns: Ensuring consistent security and compliance across multiple
cloud providers can be challenging as each provider has its security features and configurations.

• Data management and integration: Integrating data and applications across multiple cloud
providers can be complex, requiring robust data management strategies and tools to ensure
data consistency, integrity, and availability.

• Cost management: While multi-cloud strategies can optimize costs, they can also make
tracking and controlling expenses across different providers and services more difficult. Platform
engineers need to implement comprehensive cost management tools and practices to maximize
the benefits of their multi-cloud strategy for developers.

As we progress through this book, we’ll discuss strategies and best practices from a developer’s
perspective for overcoming these challenges and successfully implementing a multi-cloud strategy that
optimizes cost, performance, and resilience. We’ll delve deeper into the principles and architecture
of cloud-native applications, explore tools and technologies that facilitate multi-cloud development,
and examine real-world examples to help you apply these concepts in your projects.

Evolution of cloud-native development 11

With a solid multi-cloud and cloud-native development foundation, you’ll be well-prepared to tackle
the challenges and opportunities of building and deploying modern applications in a multi-cloud
world. Stay with us as we explore this exciting new frontier in software development.

Evolution of cloud-native development
The advent of cloud-native technologies marks a paradigm shift in application development and
deployment. Embracing cloud-native principles means moving away from monolithic architectures
to more dynamic, scalable, and resilient systems. These principles, which are deeply rooted in
microservices, containerization, and orchestration, enable applications to leverage the full potential
of cloud environments. The automation of development phases is also a central element in cloud-
native development. The ability to automate processes in software development, from deployment
to testing, is leveraged by modern development teams to increase delivery frequencies. The dynamic
management of resource allocation from cloud providers is also essential for establishing a cost-effective
cloud-native strategy. Let’s have a closer look at these principles.

Figure 1.4 traces the software development evolution: waterfall methods and monolithic structures
on physical servers in the 1980s, transitioning to Agile practices with N-tier architectures and virtual
servers in the 1990s. The 2000s integrated DevOps with microservices and containers, leading to
today’s cloud-based infrastructures:

Figure 1.4 – The evolution of the application development process

As we discussed earlier, microservices architecture, a cornerstone of cloud-native design, allows for
the development of applications as a suite of small, independently deployable services. This approach
contrasts sharply with traditional monolithic architectures, where applications are developed as
a single, indivisible unit. Microservices offer increased modularity, making applications easier to
develop, test, deploy, and scale.

Containerization further revolutionizes deployment. Containers package an application with all
its dependencies, ensuring consistency across environments from development to production.
This encapsulation aligns perfectly with the cloud-native ethos of building applications that
are environment-agnostic.

Discovering the Multi-Cloud and Cloud-Native Universe12

Orchestration tools such as Kubernetes play a pivotal role in managing these containerized applications
and automating deployment, scaling, and operations. This ensures that applications can seamlessly
scale to meet demand, maintain high availability, and recover from failures more efficiently.

The shift to cloud-native is not just technical; it also represents a cultural change within organizations.
Embracing cloud-native principles often requires adopting new methodologies such as Agile and
DevOps, fostering a culture of continuous integration and continuous delivery (CI/CD), where
small, frequent updates are the norm. These principles also lay the groundwork for automating
software processes.

Cloud-native would not be a complete strategy if it was not cost-effective. Dynamic management and
the ability to allocate resources on the fly are crucial for making cloud-native a profitable solution.
Platform engineers should ensure that resources are allocated dynamically in response to fluctuating
demand, avoiding unnecessary costs of overprovisioning.

Remember, whatever we have mentioned so far is just the tip of the iceberg to give you a holistic idea
and to get you prepared for the journey ahead. So, stay tuned – we will discuss this topic in more
detail in upcoming chapters.

The cloud-native advantage

Adopting cloud-native development provides a range of compelling benefits that drive modern
developers to embrace this approach. These advantages include the following:

• Improved agility: Cloud-native applications can be developed and deployed more quickly,
allowing organizations to respond rapidly to changing market demands and continuously deliver
value to their customers. This is partly due to CI/CD pipelines, which automate application
building, testing, and deployment, ensuring rapid and reliable releases.

• Enhanced scalability: Applications designed for the cloud can quickly scale to accommodate
fluctuating workloads, ensuring optimal resource utilization and maintaining consistent
performance even under heavy loads.

• Greater resilience: Cloud-native applications are built to be fault-tolerant, reducing the impact
of infrastructure failures on application performance and enabling the system to recover quickly
from unexpected events.

Overcoming cloud-native challenges

Despite the undeniable advantages of cloud-native development, developers may encounter challenges
as they transition to this new paradigm. Some of the most common challenges include the following:

• Increased complexity: Managing distributed systems in a cloud-native environment can be more
complex than traditional monolithic or service-oriented architectures, requiring developers to
adopt new tools, techniques, and best practices

The synergy between cloud-native and multi-cloud 13

• New skills and expertise: To fully embrace cloud-native development, developers must
acquire new skills and expertise in cloud-native technologies, such as container orchestration,
microservices patterns, and serverless computing

Let's take a use case. It could be a start-up or enterprise that is planning to transition from a traditional
application architecture to a cloud-native approach. By embracing cloud-native development, we can
quickly iterate and deploy new features to meet its ever-growing user base's changing needs. Moreover,
it can ensure that its infrastructure can scale to handle the demands of millions of users worldwide
while maintaining excellent performance and reliability. But to achieve this, they must tackle some
complex challenges, as mentioned previously, and have the right skills. Without these, the world of
cloud-native technology might feel too complicated

As we move through this journey together, we will share tips, best practices, and hands-on examples
to help you build the necessary skills and knowledge to excel in cloud-native development and
confidently navigate its challenges.

When cloud-native meets multi-cloud

At this juncture, you should have acquired some basics and gained clarity on why multi-cloud and
cloud-native development are two key approaches that, when combined, empower developers to make
the most of their strengths. By skillfully merging the benefits of cloud-native technologies with the
adaptability of a multi-cloud strategy, developers can create strong, scalable, and innovative applications
that effectively meet the ever-changing needs of users and businesses.

The synergy between cloud-native and multi-cloud
It is important to understand that when cloud-native development and multi-cloud strategies are
thoughtfully integrated, they complement each other to offer a wide range of benefits. Let's see how:

• Enhanced adaptability: A multi-cloud approach allows developers to select and combine
services from different cloud providers, enabling them to adapt to changing requirements or
embrace emerging technologies. Cloud-native development practices empower developers to
rapidly build and deploy new features, further increasing this adaptability.

• Robustness and high availability: Merging the inherent fault tolerance of cloud-native
applications with the redundancy offered by a multi-cloud strategy results in applications that
can recover from failures quickly and maintain high availability across multiple cloud providers.

• Streamlined performance: Developers can distribute workloads across various cloud providers
and choose the best services for each part of their application, leading to seamless performance
and efficient resource utilization.

• Cost efficiency: Leveraging a multi-cloud approach allows developers to capitalize on the most
cost-effective services from different providers. In conjunction with cloud-native development
practices, this can lead to significant cost savings by optimizing resource usage.

Discovering the Multi-Cloud and Cloud-Native Universe14

• Independence from vendors: Adopting a multi-cloud strategy enables developers to minimize
dependence on a single cloud provider, allowing them to switch providers or utilize new services
without affecting their cloud-native applications.

As illustrated in the following figure, the synergy between cloud-native and multi-cloud emphasizes
the importance of integrating these two paradigms in today’s application development landscape.

By adopting cloud-native principles, developers can create applications that are inherently scalable
and resilient. Simultaneously, utilizing multi-cloud strategies allows them to leverage the best services
and features from multiple cloud providers. This approach fosters greater flexibility and innovation,
ultimately leading to the development of more efficient, reliable, and adaptable applications.

Figure 1.5 illustrates the progression of multi-cloud and cloud-native applications: starting with
cloud adoption through data centers and virtual machines, evolving to cloud automation and culture
transformation with DevOps, to accelerating digital projects with cloud-native apps, and finally to
achieving enterprise transformation with multi-cloud native apps for optimal efficiency and scale:

Figure 1.5 – The synergy and journey of multi-cloud and cloud-native applications

Overcoming challenges

While the integration of cloud-native development and multi-cloud strategies offers numerous benefits,
it also introduces some challenges. In this section, we’ll discuss common challenges developers might
face and suggest approaches to overcoming them.

Managing complexity

The nature of cloud-native and multi-cloud strategies combination can organically lead to increased
complexity as developers have been tasked to understand handled multiple services, cloud providers,
and distributed systems. To overcome this challenge, here are some basic tips to consider:

• Tools such as Kubernetes, Terraform, and Ansible, which can help manage and automate the
deployment, scaling, and monitoring of your applications across multiple clouds

The synergy between cloud-native and multi-cloud 15

• Centralizing logs and metrics from various cloud providers, which can provide better visibility
into your applications’ performance and simplify troubleshooting

Ensuring security and compliance

Security and compliance are critical aspects of any application, and multi-cloud environments can
introduce additional risks. To mitigate these risks, do the following:

• Implement consistent security policies and controls across all cloud providers, ensuring that
access controls, encryption, and other security measures are uniformly applied

• Regularly audit your multi-cloud environment to identify potential vulnerabilities and maintain
compliance with relevant regulations

Managing costs

While a multi-cloud strategy can lead to cost savings, it may also increase the complexity of cost
management. To effectively manage costs, do the following:

• Monitor and analyze resource usage across different cloud providers to identify inefficiencies
and optimize resource allocation

• Leverage cost management tools to track spending and set budgets or alerts based on your
organization’s requirements

Acquiring and developing skills

Mastering cloud-native development and multi-cloud strategies requires developers to acquire new
skills and knowledge. To address this challenge, do the following:

• Invest in training and certification programs to help developers acquire the necessary skills to
work with cloud providers and cloud-native technologies

• Encourage knowledge sharing and collaboration among team members, fostering a culture of
continuous learning and improvement

By addressing these challenges head-on, developers can fully harness the power of cloud-native
development and multi-cloud strategies, unlocking their potential to build innovative, efficient, and
resilient applications.

Moreover, the advent of cloud computing also fostered the rise of DevOps practices, emphasizing
collaboration between development and operations teams to ensure faster, more reliable software
delivery. By automating processes such as testing, deployment, and monitoring, cloud platforms
enable teams to work more efficiently and reduce the risk of errors, further accelerating the pace of
innovation in application development. We will cover the role of DevOps and platform engineering
at the end of this chapter, so stay tuned.

Discovering the Multi-Cloud and Cloud-Native Universe16

The cultural shift in development
As we come to the end of this chapter, It is important to state that the evolution to cloud-
native development is a testament to a profound shift in the cultural landscape of software
development. For developers, this shift is not just about adopting new technologies; it's about
embracing a fundamental transformation in how development teams operate and interact.
Historically, development followed a project-based approach, characterized by distinct phases and a
hand-off mentality. Teams would work in silos, focusing solely on their part of the project, often in
a linear and compartmentalized fashion. This traditional model, while structured, proved inflexible
and often misaligned with the dynamic nature of user needs and market demands.

The advent of cloud-native development has ushered in an era of product-centric thinking. In this
paradigm, teams are not just builders but also custodians of the product throughout its life cycle. This
holistic approach fosters a continuous development cycle, embedding feedback loops that resonate
closely with user needs and business objectives. It's a transformative mindset that shifts the focus
from merely creating software to nurturing and evolving it in sync with the ever-changing technology
landscape and user expectations.

In the traditional waterfall development cycles, rigidity and hierarchy were the norms. Departments
with specialized roles operated within strict boundaries, adhering to a linear development trajectory.
However, cloud-native development breaks these barriers. It leverages the strengths of cloud providers,
not only in terms of robust infrastructure but also through advanced technology stacks and development
tools. This synergy gives rise to a novel paradigm, one that demands a reconfiguration of traditional
business structures. As companies migrate to the cloud, they encounter structural shifts, necessitating
a reorientation of departments and development workflows. This digital transformation calls for
readiness at all organizational levels to embrace changes in roles, responsibilities, and methodologies.

In the cloud-native culture, agility and resilience take center stage. Developers, no longer confined to
narrow roles, embrace comprehensive practices such as the Agile methodology and DevOps. These
approaches enhance collaboration and streamline processes, ensuring that teams can respond swiftly
and effectively to changes. Automation and CI/CD pipelines become critical, not just for efficiency but
also for the reliability and predictability they bring to application deployment. This culture prioritizes
customer-centric design, urging developers to deeply understand user experiences and craft solutions
that are not just functional but also intuitive and engaging.

In a nutshell, transitioning to cloud-native is an intricate dance of adopting cutting-edge technologies
and nurturing a mindset that champions adaptability, customer focus, and perpetual evolution.
This cultural metamorphosis is crucial for organizations aiming to maintain their competitive edge
in the fast-paced digital arena. As we delve deeper into the nuances of cloud-native development,
particularly the roles of DevOps and platform engineering in multi-cloud environments, it will make
these statement clear that this shift is not just a trend but a fundamental redefinition of how software
is developed, deployed, and sustained. With that said, let's have a high-level view of how these cultural
transformations align with today's internal team hierarchies. This is one example where each individual
team fits in the pyramid structure

Summary 17

Figure 1.6 – Cloud-Native Value Pyramid

With this, we have come to the end of the chapter.

Summary
In this chapter, we've established a solid foundation for understanding multi-cloud and cloud-native
development. To recap, we started with the essentials the evolution of cloud computing and its
expansion into hybrid and multi-cloud environments, examining their advantages and challenges. We
then learned how cloud-native development synergizes with multi-cloud strategies and the hurdles
developers face in adopting these advanced methodologies. Lastly, we emphasized the importance of
cultural and mindset shifts in this rapidly changing domain.

As we close this chapter, we have set the stage for a deeper exploration of the principles and architecture
of cloud-native applications in Chapter 2, Building the Backbone of Cloud-Native Applications. Our
journey will take us through the intricacies of designing, developing, and deploying cloud-native
applications in multi-cloud environments, enriched by real-world examples, best practices, and
practical exercises.

Together, we will navigate the exciting landscape of multi-cloud and cloud-native development,
empowering you with the skills and knowledge necessary to confidently create and manage cutting-
edge applications in a multi-cloud world. Let’s continue this enlightening journey and unlock the full
potential of multi-cloud and cloud-native development for developers like you.

2
Building the Backbone of

Cloud-Native Applications

Welcome back! Step into the second chapter of our multi-cloud and cloud-native journey. We roll up
our sleeves and get our hands on the principles and architectural nuances that underpin cloud-native
applications. In this chapter, we will pull back the curtain of cloud-native principles and architecture
to the thrilling world of cloud-native application. Over this chapter, we are going to use different
metaphors to make this journey a fun ride; stay tuned!

The following topics will be covered in this chapter:

• The cloud-native stack

• Principles of cloud-native architecture

• Microservices architecture

• Cloud-native application architecture

The cloud-native stack
Before we get into cloud-native application architecture and practical examples, it is important to
understand the cloud-native stack – an architecture that’s become essential in the development and
operation of modern applications. It’s built upon the principles of the cloud, which prioritize flexibility,
automation, and scalability. At its base, this stack incorporates the fundamentals – computing resources
(compute, storage, and network) – optimized for cloud environments:

Building the Backbone of Cloud-Native Applications20

Figure 2.1 – Cloud-native stack

From the preceding diagram, imagine the cloud-native stack as a four-tiered cake, each layer playing
a crucial role in crafting resilient applications. Let’s peel down from the top of the stack:

1. Developer experience: On the top lies the developer experience layer, a smorgasbord of tools
designed to accelerate application construction and testing. Here, container registries such
as Docker Hub house pre-built containerized components, ready to be assembled into your
masterpiece. CI and continuous delivery (CD) pipelines automate the build and deployment
process, ensuring seamless transitions from code to running application. Container orchestration
engines such as Kubernetes orchestrate the deployment and management of your containerized
troops, taking the burden off your shoulders.

2. The orchestration engine and runtime: Now, we descend to the heart of the stack: the
container orchestration engine and runtime. Think of it as a skilled conductor, overseeing the
performance of your microservices (independent, containerized application components).
Typically having a container runtime, the familiar and most preferred orchestrator Kubernetes
takes care of scheduling, scaling, and healing your containers, ensuring smooth operation and
optimal resource utilization. The orchestration layer is responsible for managing the life cycle
of containerized applications, along with security and handling services with the help of a
service mesh (for example, Istio).

3. Infrastructure – compute, storage, and network: Finally, the foundation of the stack rests on
the physical infrastructure: the compute, storage, and network resources. These can be either
managed by a cloud provider such as Amazon Web Services (AWS) or Google Cloud Platform
(GCP) or maintained on-premises, offering flexibility to suit your needs.

Principles of cloud-native architecture 21

Remember – the cloud-native stack is a vibrant ecosystem, constantly evolving with new technologies
and best practices emerging on the horizon. Embracing this dynamic paradigm and staying abreast
of advancements will empower you to build ever-more agile, scalable, and resilient applications,
solidifying your competitive edge in the ever-changing cloud landscape.

Principles of cloud-native architecture
Building a cloud-native application is more than just ticking boxes and moving operations to the
cloud. It’s about imbibing a new mindset and understanding the unique principles influencing how
applications are designed, developed, deployed, and maintained in the cloud environment. Let’s take
a stroll through these principles.

The Twelve-Factor App – a quick walk-through

The Twelve-Factor App is a term you have encountered frequently in cloud-native circles. No – it’s
not some mysterious secret society but a collection of 12 principles (hence the name) that guide the
development of modern and scalable applications. These principles were first laid down by developers
at Heroku, who drew on their experiences building applications on the cloud. These days, there
are discussions about 15 factors as well, but we will focus on 12 factors in this chapter to keep the
standard practice.

Note
You can refer to the following link to learn more about 15-factor applications: https://
developer.ibm.com/articles/15-factor-applications/.

Figure 2.2 presents the flow of 12 factors in a microservices architecture:

Figure 2.2 – Flow of 12 factors in action

https://developer.ibm.com/articles/15-factor-applications/
https://developer.ibm.com/articles/15-factor-applications/

Building the Backbone of Cloud-Native Applications22

Understanding these principles is akin to having a reliable compass in our cloud-native journey.
They ensure we’re heading in the right direction as we build our applications. Let’s briefly run
through these principles with a Node.js application that can be found at https://github.
com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/
Chapter-2:

1. Code base: The first factor advocates for one code base tracked in revision control, with many
deployments. This factor sets the need for applications’ code bases to be hosted on a version
control system (VCS) keeping track of deployments and facilitating collaboration between
developers. In our case, the Node.js application is facilitated through a GitHub repository, and
the first factor is then respected.

2. Dependencies: Dependencies explicitly demand that an application never rely on the implicit
existence of system-wide packages. It should declare all dependencies, completely and exactly,
via a dependency declaration manifest. This is a departure from the days of sprawling code
across various environments, leading to the “it works on my machine” phenomenon. It’s about
ensuring that the code base remains singular but deployable across stages, from development
to production.

From the Node.js example, it is evident that the application can load environment variables,
which can vary between deployments:

require('dotenv').config();

3. Configuration: Pushes for the separation of config from code, arguing that configurations
driving different deployments should not be baked into the application. Unlike monolithic
architectures that might integrate settings directly into code, cloud-native apps externalize
configuration, often through environment variables, enabling seamless transitions between
environments without code changes. This factor dictates that external dependencies should
also be application programming interfaces (APIs), databases, and so on.

In the following Node.js example, the snippet shows code configured and packed to ease
software releases, including networking or routing, and communicating with external or
third-party servers:

require('dotenv').config();

const port = process.env.PORT || 3000;

Here, the following takes place:

 � require('dotenv').config();: This line loads environment variables from a
.env file into process.env

 � const port = process.env.PORT || 3000: The application port is set from an
environment variable, providing flexibility for different environments

https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-2:
https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-2:
https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-2:

Principles of cloud-native architecture 23

4. Backing services: These are attached resources needed by software for improved functioning.
Backing services are external to the application and can often be provided by a third party.
The software might then use dedicated channels to communicate with these services, often
requiring credentials or additional parameters, whose configuration should remain external
to the application. As a result, software becomes loosely coupled from its backing services,
offering modularity and easier deployment.

A great example is the Node.js application, which treats the backing services as attached
resources, meaning they can be attached and detached by the environment. In case of failure,
you as developers might need to change the binding to an active backing service, only by
modifying an external configuration file or environment variable:

const mongoose = require('mongoose');
const dbUrl = process.env.DATABASE_URL;
mongoose.connect(dbUrl, { useNewUrlParser: true,
useUnifiedTopology: true })

In this example, we can observe that MongoDB is the backing service and the connection URL
is stored in an environment variable. To change the database, you will need to simply modify
the environment variable without code intervention.

5. Build, release, run: Strictly separates build and run stages, advocating for immutable build
releases that transition to the run stage without further modification. This contrasts with
traditional approaches where the application may be modified between the build and deploy
stages, leading to unpredictable results.

The three stages of the application life cycle – build, release, and run – are strictly separated.
In our Node.js application, this is evident from the use of a dedicated Jenkins file to establish
a pipeline for application delivery, which in this case includes three stages: building, testing,
and deploying:

stages {
 stage('Build') {
 steps {
 sh '''docker build -t my-node-app .
 docker tag my-node-app jeveenj/my-node-app
 docker push jeveenj/my-node-app
 '''
 }
 }
 stage('Test') {
 steps {
 sh 'docker run --rm my-node-app npm test'
 }
 }
 stage('Deploy') {

Building the Backbone of Cloud-Native Applications24

 steps {
 sh 'kubectl apply -f deployment.yaml'
 }
 }
}

6. Processes: Encourages execution of the app as one or more stateless processes with data
persistence managed by a backing service. This is a shift from monolithic apps that might manage
state internally, leading to scaling challenges and potential for failures. The Node.js application
executes as a stateless process, meaning it maintains no persistent state and can be restarted
without affecting data integrity. This is achieved by the use of asynchronous request handling
and the process isolation of the child_process module that starts a separate admin process:

const adminProcess = require('child_process').spawn('node',
['admin.js']);

7. Port binding: Enables services to be exposed through port binding, which is often managed
by the execution environment in cloud-native deployments, as opposed to being embedded
within servers.

The Node.js application is self-contained and does not rely on the runtime injection of a web
server. This is demonstrated by the explicit binding of the port using the following lines of code:

const port = process.env.PORT || 3000;
app.listen(port, () => {
console.log(`Server listening on port ${port}`);});

In this example, the application is binding to a port number stored in the environment
variable or to the default port, 3000. This allows the port to be assigned dynamically by the
environment, crucial for deploying applications in a cloud environment, where we usually do
not choose which ports to use.

8. Concurrency: Scales out via the process model. In a monolithic world, scaling often means
running multiple copies of the application on larger hardware. Cloud-native principles advocate
for scaling individual components of the app independently. The Node.js application scales
out across processes, not threads. This is achieved by the use of multiple instances of the
Node.js process running in different containers, as defined by the Dockerfile, which will allow
flexible scalability.

9. Disposability: Promotes fast startup and graceful shutdown, which is crucial for cloud-native
applications that must be resilient and maintainable under the orchestration of platforms such
as Kubernetes, contrary to traditional apps, which may not be designed for such rapid cycling.

10. Dev/Prod parity: Aim for as close a resemblance as possible between development and
production environments, minimizing the time and personnel gaps between code commit
and deployment. In the Node.js application, this is achieved by the Dockerfile, which will

Microservices architecture 25

represent a packed and portable environment ready to be duplicated. This will ensure that the
environment is identical across development phases.

11. Logs: Treat logs as event streams; cloud-native applications are often designed to emit logs
in a format that can be easily consumed and analyzed by external systems. In the following
example, a middleware function logs the HTTP method and URL of each incoming request,
demonstrating basic logging functionality:

// Basic logging middleware
app.use((req, res, next) => {
 console.log(`Incoming request: ${req.method} ${req.url}`);
 next();
});

12. Admin processes: Run admin/management tasks as one-off processes, ensuring that these tasks
are carried out in an environment similar to the regular long-running application.

In the Node.js application, the /restart admin route sends a request to the admin process
to restart the application.

Imagine your application as a concert. In that case, the Twelve-Factor App methodology ensures
that every instrument (or factor) plays its part correctly, creating a harmonious symphony pleasing
to the ears (or, in our case, the users). Through these principles, the Twelve-Factor methodology lays
the groundwork for applications that can leverage the full spectrum of cloud-native capabilities–
microservices, APIs, and service discovery–each becoming cogs in a much larger, distributed, and
resilient machinery. Microservices architecture breaks down complex applications into smaller,
independently deployable services, each scoped around a specific business function. This granularity
is the antithesis of monolithic design, reducing interdependencies and improving fault isolation.

Next, we will learn about microservices architecture, another significant principle in
cloud-native architecture.

Microservices architecture
Before we dive further, let’s take a look at the difference between traditional and cloud-native architecture:

Building the Backbone of Cloud-Native Applications26

Figure 2.3 – Microservices architecture

Typically, cloud-native architectures help to reduce the amount of non-functional code in our
applications. In traditional applications, a lot of code is needed to handle non-functional issues, such
as scalability, reliability, and security. In a cloud-native architecture, this code can be stripped out and
incorporated into cloud-native infrastructure, products, and technologies. This allows developers to
focus more on business code and less on non-functional concerns. As we move further, one term that
frequently pops up is microservices. It’s easy to think of microservices as simply breaking down an
extensive application into smaller parts, but it’s more than that.

Imagine having a giant, complex Lego structure. It’s beautiful and impressive, but it’s also delicate.
One wrong move could send it crashing down. Imagine having the same structure, but each section
is independently built and linked to the others. It’s still the same structure, but now it’s more resilient
and easier to understand, modify, and maintain.

That’s what microservices architecture does to your application. It breaks it down into a collection
of loosely coupled services, each performing a specific function. These services can be developed,
deployed, and scaled independently, providing flexibility and resilience.

But here’s where the magic of microservices truly shines. These individual services can communicate
and collaborate with each other to perform complex tasks, just like a well-coordinated team. It’s like
having a group of expert musicians, each playing their own instrument, but together, they create a
beautiful symphony.

This architecture is a crucial pillar of cloud-native applications, enabling rapid, frequent updates
and facilitating scalability and resilience. But, as you’ll see in the following few sections, it works in
collaboration. Other principles, such as statelessness, immutability, and service discovery, all work in
harmony with microservices to create applications that truly leverage the power of the cloud.

Microservices architecture 27

Statelessness and immutability

When building cloud-native applications, two absolute game-changer principles are statelessness
and immutability. These two principles, akin to superheroes, ensure that our applications can scale
effortlessly, recover from failures rapidly, and provide consistent, reliable service. But what exactly
are they?

Statelessness, in the simplest terms, means that your application does not store any client-specific
data from one session to the next. Think of it as conversing with someone without memory of your
previous interactions. Every interaction is fresh and does not rely on the past. In technical terms, each
request to your application should be independent of others.

Why is this so beneficial in a cloud-native world? Well, statelessness makes your application incredibly
flexible. Since no session data is stored, any instance of your application can handle any request. This
makes it easy to scale your application by simply adding more instances. Also, if an instance fails,
others can easily pick up the slack without disruption.

But that’s not all. Statelessness also simplifies your application architecture by removing the need for
session management, making your application easier to maintain and update.

Let’s shift our focus to the second superhero in this narrative – immutability. In a world where change
is constant, immutability is counterintuitive. It refers to the concept that an entity cannot be changed
once it is created.

If statelessness is about not storing data, immutability is not changing data. Once a deployment artifact
(such as a Docker container or a compiled Java .jar file) is created, it does not change. Instead, new
versions of the artifact are created for every change.

Now, why would we want something that does not change? Isn’t change a good thing? Yes – change
is good, but predictability and reliability are better. Immutable artifacts are predictable because their
behavior never changes. They’re reliable because you can test them thoroughly before deployment.

Together, statelessness and immutability create an environment where your application can perform
consistently and reliably, scale effortlessly, and recover rapidly from failures. But, as powerful as they
are, they work with others. They collaborate with other principles such as APIs and service discovery,
which we’ll explore next.

APIs and service discovery

To make it more interesting, let us go with a metaphor to help understand the topic better. Imagine
you’re in a large city for the first time, trying to find a specific restaurant. You have the address, but the
city is a maze of streets, and you need help. What if you had a local guide who knows the city inside
out and can take you directly to the restaurant? Wouldn’t that be easier?

That’s what APIs and service discovery do in the world of cloud-native applications. With the microservices
architecture, your application is a collection of loosely coupled services, each doing its own thing.

Building the Backbone of Cloud-Native Applications28

APIs act as the interface through which these services communicate with each other and the outside
world. They define how other services or users can request information or operations from a service.

Service discovery, on the other hand, is the local guide in our analogy. Keeping track of all services
can be daunting in a dynamic environment such as the cloud, where services can be added or
removed at any moment. That’s where service discovery comes in. It maintains a record of all services,
locations, and availability, allowing services to find and communicate with each other. Consider the
following example:

const express = require('express');
const bodyParser = require('body-parser');
const mongoose = require('mongoose');
const services = require('./models/service');

const app = express();
app.use(bodyParser.json());

// Connect to MongoDB
mongoose.connect('mongodb://localhost/service-registry', {
useNewUrlParser: true });

// Routes for service registration and discovery
app.post('/register', async (req, res) => {
 const service = new services(req.body);
 await service.save();
 res.json({ message: 'Service registered successfully' });
});

app.get('/services', async (req, res) => {
 const services = await services.find();
 res.json(services);
});

// Start the server
app.listen(3000, () => {
 console.log('Service Registry listening on port 3000');
});

In this example, we can observe that our application has a library of services; that is, the service
discovery. Following this logic, all the services that our application might use are stored in one library.
In this case, services are registered with a name, URL, endpoints, and authorization parameters. Only
registered services can be used within the application. If a developer needs to add a new service, they
can append it to the library without the need to modify the code.

Microservices architecture 29

These two aspects are crucial in ensuring your cloud-native applications’ smooth operation and
scalability. Without them, managing a microservices-based application would be like navigating a
bustling city without a map or a guide.

Next, we’ll delve into the principles of scalability and elasticity and how cloud-native apps respond to
demand. Stick around as we continue our exploration of the underpinnings of cloud-native applications.

Scalability and elasticity

Imagine hosting a party. Initially, only a few guests arrive, and it’s manageable. But as the night goes
on, more and more people turn up. Suddenly, you find yourself overwhelmed, scrambling to keep up
with the demand for food, drinks, and space. What if you could magically increase the size of your
house, the amount of food, and the number of servings in response to the increasing number of guests
and then scale it all back down once the guests leave? Sounds convenient, right?

Scalability and elasticity in cloud-native applications offer similar convenience. Scalability refers to
an application’s ability to handle an increasing amount of load by adjusting the amount of resources
it uses. On the other hand, elasticity is the ability to do so quickly and automatically in response to
dynamic workload changes.

Why are these concepts crucial in cloud-native environments? In the cloud, traffic patterns can be
highly variable. You could have a few users one minute and a few thousand the next. If your application
can’t scale, it won’t be able to handle the load, leading to poor performance or even complete failure.

Cloud-native applications can handle these traffic surges smoothly by being scalable and elastic. When
the load increases, they can automatically spin up more instances to handle the load and then spin
them down once the surge is over. It’s like having a magical house that grows and shrinks based on
the number of guests.

However, managing this increase has its challenges. As we scale, we also need to ensure that our
application remains resilient and can handle failures gracefully, which brings us to the following principle.

Resilience and fault tolerance

“Perfection is a myth,” especially in the chaotic world of technology. Yes – servers crash, networks buckle,
and glitches surface out of nowhere. It’s not about if these events occur but rather when they strike.

In such an environment, resilience and fault tolerance (FT) are desirable and essential qualities. A
resilient application can cope with failures and continue to function, while a fault-tolerant application
is designed to prevent service failures in the case of faults or errors.

But how do we achieve this in a cloud-native application? Well, we weave resilience and FT into the
very fabric of our application. We design our application assuming that failures will occur, and we
plan for them.

Building the Backbone of Cloud-Native Applications30

This might mean using redundant components so that others can pick up the slack if one fails. It
might mean implementing circuit breakers (CBs) to prevent a failure in one service from cascading
to others. It could also mean designing our application to degrade gracefully in the face of failures,
offering limited functionality instead of crashing completely.

One crucial aspect of building resilience and FT is continuous testing. We don’t just test our application
for happy paths but also for potential failures. We deliberately introduce failures into our system to
see how it reacts. This practice, known as chaos engineering (CE), can uncover hidden issues and
help us make our applications more resilient.

Last but not least, the heartbeat of cloud-native apps – CI/CD.

Cloud-native application architecture
The following diagram illustrates the architecture of a cloud-native application. As we can observe, the
architecture is composed of different microservices, each serving a specific operation in our application.
The microservices can then coordinate with each other thanks to an orchestration layer. On the other
hand, requests coming from client apps are routed and sent to the specialized microservice thanks
to the API gateway.

Microservices, API gateway, and service mesh are essential practices in the cloud-native arena. In this
section, we will explore these concepts from an architectural perspective of cloud-native applications:

Figure 2.4 – A sample cloud-native architecture

Components of a cloud-native application – the building blocks

First, let’s understand the key building blocks of a cloud-native application. Imagine constructing a Lego
structure; you wouldn’t use one giant piece. Instead, you’d use many smaller blocks, each representing

Cloud-native application architecture 31

a unique piece of the overall structure. Similarly, cloud-native applications are composed of discrete,
modular components. Let us get to understand them one by one.

Microservices, API gateway, and service mesh

The following diagram shows a common architecture for a cloud-native application. In this section,
we will take a case study to unveil some essential components of a scalable, flexible, and resilient
cloud-native app:

Figure 2.5 – Architecture of a cloud-native application

The three core building blocks of cloud-native applications are microservices, API gateway, and
service mesh:

• Microservices: This is the equivalent of breaking down your Lego model into individual pieces.
Each microservice is a small, independent service that performs a specific functionality. They
run in their own process and communicate with lightweight mechanisms, usually an HTTP-
based API. This design allows teams to develop, deploy, and scale services independently of one
another. This also means that when a part of your application faces an issue, the rest of your
services can continue to function without being affected. In the diagram, we can observe that
for the e-commerce platform, we will have specialized microservices for each major operation,
including managing the catalog, orders, and shopping cart.

Building the Backbone of Cloud-Native Applications32

• API gateway: The API gateway is like the baseplate in a Lego set. It's the foundation that holds all
the blocks together. Technically, the API gateway routes requests to the appropriate microservices.
It acts as a single entry point into your system, which external clients can access. This pattern
can address many concerns such as routing, versioning, rate limiting, access control, and even
handling protocol translations. The diagram shows that the API gateway sits between the client
applications and the microservices, dispatching requests to the corresponding microservices.

• Service mesh: While the API gateway takes care of external requests, the service mesh manages
the communication between microservices internally. Imagine it as a communication network
between the musicians of our orchestra. A service mesh provides discovery, load balancing,
failure recovery, metrics, monitoring, and complex operational requirements such as A/B testing,
canary releases, rate limiting, access control, and end-to-end authentication. As illustrated in
the diagram, the service mesh allows us to centralize communication between microservices,
avoiding direct communication and falling into a classic monolithic architecture.

Event-driven architecture and serverless computing

Two key design patterns that enable cloud-native applications to be responsive, flexible, and scalable
are event-driven architecture (EDA) and serverless computing:

• EDA: Think of expanding your Lego model where each piece is designed to respond to specific
triggers. Take a Lego car that only begins its journey when you tap a button. This is the spirit of
EDA in cloud-native applications. In this framework, services aren't in constant chatter. Rather,
they stay on standby, activating only when a certain event signals them to, just like the Lego car
that springs to life with a button push. This design ensures that the whole application is more
agile and adaptable, offering a clear understanding of its operations at every turn, much like
being fully aware of what prompts your Lego car to race ahead.

• Serverless computing: Imagine you're ready with a brilliant idea for a Lego set. Instead of
manually connecting each piece, envision a scenario where, once your concept is clear, the
structure materializes according to your blueprint. This concept mirrors the core of serverless
computing in the tech world. Here, developers write their code and deploy it. The cloud provider
then steps in, taking over the complex management of infrastructure, paralleling an automated
system that assembles your Lego set. This approach allows developers to focus entirely on the
creative side of coding their application, reminiscent of concentrating on designing an elaborate
Lego masterpiece, while the detailed and labor-intensive construction happens smoothly and
invisibly in the background.

Data storage and management in cloud-native applications

Data is the lifeblood of every application, acting as the foundational framework that enables your app
to function and deliver value effectively. Similar to how a baseplate in a Lego set secures and aligns
every block, data underpins and directs the operations within cloud-native applications. In such
environments, applications are typically spread across different settings, necessitating a comprehensive
data management strategy to ensure consistency, availability, and durability.

Summary 33

Here are some key data management strategies used in cloud-native applications:

• Databases: In the microservices architecture, just as specific Lego blocks are designated for
distinct parts of a model, each microservice may have its own database, known as the Database-
per-Service pattern. This method allows each microservice to choose a database that best matches
its requirements, whether it's a relational database, a NoSQL database, or even a graph database.

• Data caching: Consider how certain parts of a Lego set might be the focal points, frequently
connected and interacted with. Similarly, applications often need to access specific data
repeatedly. Caching is like keeping a Lego piece within easy reach for quick use. By storing
copies of frequently accessed data in caches, applications benefit from high-speed data retrieval,
enhancing performance and the user experience.

• Data replication and sharding: In cloud-native settings, data often spans multiple databases
to ensure higher availability and fault tolerance, similar to how a complex Lego structure might
extend across several baseplates for added stability and expansiveness. This distribution is
managed through techniques such as data replication (involving identical data across multiple
databases) and sharding (where different sets of data are distributed across multiple databases).
These methods ensure that the data layer remains robust, scalable, and resilient, resembling a
well-structured and intricately designed Lego masterpiece.

With this, we have come to the end of the chapter.

Summary
In this chapter, we embarked on an exciting journey through the world of cloud-native applications,
using our Lego metaphor to piece together each concept clearly and playfully. We laid the groundwork
by introducing key principles such as the Twelve-Factor App methodology, microservices, APIs, and
the concept of statelessness, just as you'd start a Lego project by choosing the right base and bricks.

We also navigated through vital features such as scalability, elasticity, resilience, and fault tolerance,
understanding how they make cloud-based apps as sturdy and adaptable as a well-designed Lego
structure. Our exploration took us deeper into the architecture of cloud-native applications, examining
the roles of microservices, API gateways, and service meshes, and appreciating how each part fits
together like perfectly interlocking Lego pieces. We didn't shy away from complex topics either, tackling
EDA and serverless computing, and adding more unique blocks to our growing Lego masterpiece of
cloud-native knowledge.

In our upcoming chapter, we’ll dive even deeper into the fascinating world of cloud-native development.
We’ll explore the intricacies of designing cloud-native applications specifically tailored for multi-cloud
environments. So, keep those explorer hats on as we venture further on this captivating journey!

Part 2:
Designing and Developing
Cloud-Native Applications

for Multi-Cloud

This part of the book guides you through the nuanced process of designing and developing cloud-
native applications optimized for multi-cloud environments. It starts by introducing you to the core
concepts and design principles essential for creating cloud-native applications. You’ll learn how to
ensure portability and efficiency across different cloud platforms and delve into distributed application
design patterns, domain-driven design, and API-first approaches. The chapters also cover practical
aspects of development, including using infrastructure as code, continuous integration and deployment,
GitOps, and DevOps practices, along with containerization and orchestration techniques using
Docker and Kubernetes. By the end of this part, you’ll be equipped with a thorough understanding
of cloud-native architecture and principles, ready to design and develop applications that thrive in a
multi-cloud ecosystem.

This part has the following chapters:

• Chapter 3, Designing for Diversity with Multi-Cloud Application Strategies

• Chapter 4, Crafting and Deploying in the Multi-Cloud as a Developer

3
Designing for Diversity with

Multi-Cloud
 Application Strategies

Now that we have covered the foundation of cloud-native, let's venture into the heart of designing
cloud-native applications for multi-cloud platforms. We commence with the unique considerations
and the strategic importance of multi-cloud design. This knowledge forms the basis of understanding
multi-cloud architecture, an essential pillar for any cloud-native developer. As we navigate through
the multi-cloud landscape, we pinpoint the key principles of multi-cloud application design and
unravel the art of selecting the right technologies. We emphasize how the right choices can serve as
the lifeblood of a successful application. Following this thread, we explore the challenges and strategies
in data management across various cloud platforms. By bridging the topic of application deployment
and orchestration in multi-cloud, we offer insights into coordinating application components in this
complex terrain.

Keeping an eye on our applications, we delve into monitoring and observability, which are vital
aspects in maintaining the health of applications in a multi-cloud environment. By shifting our gaze to
financial aspects, we shed light on strategies for optimizing costs in multi-cloud, a pivotal consideration
for any organization. To reinforce our understanding, we draw from real-world scenarios through
insightful case studies and finally distill our learning into a set of practical best practices for multi-
cloud application design.

Embark with us on this enlightening journey and harness the potential of multi-cloud environments
for your cloud-native applications.

The following topics will be covered in this chapter:

• Cloud-native design patterns

• Designing for multi-cloud

Designing for Diversity with Multi-Cloud Application Strategies38

• Role of Domain-Driven Design (DDD)

• Importance of an API-first approach

• Selecting the right technologies for a cloud-native foundation

• Data management in multi-cloud

• Monitoring and observability in multi-cloud

• Case studies

• Best practices for multi-cloud application design

Cloud-native design patterns
In the architectural tapestry of cloud-native application development, design patterns act as the
master blueprint. They guide developers through the labyrinth of service interdependencies, data
management, and scalability challenges. In this section, we’ll delve deep into the realm of cloud-
native design patterns, providing you with the requisite understanding and practical insight to create
robust and efficient applications. The practical examples used in the explanation can be found in this
GitHub repo: https://github.com/PacktPublishing/Multi-Cloud-Handbook-
for-Developers/tree/main/Chapter-3. Let’s understand these design patterns in detail:

• Microservices architecture: Let’s start with microservices architecture, the linchpin of cloud-
native development. Microservices decompose a large application into manageable, independent
services, each performing a single business capability, as depicted in Figure 3.1. They promote
a decentralized approach to software development where teams can work autonomously,
selecting the best tools and languages for their specific service. However, remember that with
great power comes great responsibility. While the microservices pattern offers flexibility and
scalability, it also necessitates intricate service orchestration and demands a robust approach
to tackle communication complexities and data consistency challenges.

Figure 3.1 – Microservice architecture

https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-3
https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-3

Cloud-native design patterns 39

Let’s consider some of the strengths and weaknesses of microservice architecture:

 � Strengths:

 � Microservice architecture breaks down applications into smaller, independent components
(microservices), each responsible for a specific functionality. This modularity makes it
easier to understand, develop, and maintain applications. Teams can focus on building
and maintaining the smaller, well-defined parts of the application, leading to increased
productivity and faster development cycles. Isolating functionalities within separate
microservices also improves code reusability and makes it easier to refactor and improve
specific parts without affecting the entire application. Microservices can be deployed
independently of each other. This enables continuous integration and continuous delivery
(CI/CD) practices. Developers can release updates to individual microservices without
affecting the entire application, reducing the risk of downtime and allowing for faster release
cycles. Independent deployment also enhances fault isolation. If a particular microservice
fails, it doesn’t necessarily lead to the failure of the entire application.

 � Microservices encourage the use of different technologies, languages, and frameworks
within different services. This flexibility allows development teams to choose the best
tools for their specific microservices based on their requirements and expertise. It fosters
innovation and adaptation, as teams can adopt new technologies without affecting the
entire architecture.

 � Weaknesses:

 � Microservices introduce a distributed architecture where components communicate
over networks, leading to increased complexity compared to monolithic architectures.
Distributed systems are susceptible to issues such as network latency, communication
failures, and partial failures. This complexity can make debugging and troubleshooting
more challenging. Ensuring data consistency and maintaining a cohesive user experience
across multiple services can be complex and require careful design.

 � As services operate independently, ensuring proper co-ordination between them is crucial
to maintaining overall application functionality. Challenges arise when services need
to collaborate on complex operations that span multiple microservices. Implementing
proper choreography or orchestration can be complex. Achieving data consistency across
services becomes more difficult, especially in scenarios where multiple services need to
update related data. Techniques such as distributed transactions or eventual consistency
must be carefully considered.

Designing for Diversity with Multi-Cloud Application Strategies40

 � Example: An e-commerce application can be broken down into microservices, such as user
management, product catalog, shopping cart, and payment processing. In the following
example, the Node.js service handles user data. It’s an example of a microservice responsible
for a specific functionality (user management):

const express = require('express');
const app = express();
const port = 3000;

app.get('/user/:id', (req, res) => {
 res.json({ userId: req.params.id, name: 'John Doe' });
});

app.listen(port, () => {
 console.log(`User service running on port ${port}`);
});

• Containerization: Moving on, we find ourselves amidst the containerization pattern. Containers
are the lifeboats of the cloud-native sea, providing a consistent and isolated environment
for your application to thrive. They encapsulate your application and its dependencies into
a standalone executable unit, ensuring the application behaves consistently across various
computing environments, as depicted in Figure 3.2. However, the caveat lies in managing these
containers. Without proper orchestration and monitoring tools, handling a myriad of containers
can quickly become a Herculean task.

Figure 3.2 – Container architecture

Cloud-native design patterns 41

Let’s consider some of the strengths and weaknesses of containerization:

 � Strengths:

 � Containerization ensures that applications run consistently across different environments,
ensuring uniformity across teams and environments. Developers can package everything
needed to run an application into a container image. Containers encapsulate the application
along with its dependencies, libraries, and configurations, ensuring the same behavior from
development to testing to production. This consistency improves collaboration between
developers, testers, and operations teams, leading to fewer deployment-related surprises.

 � Containers are an ideal match for a microservices architecture, as each microservice can be
packaged as an independent container. Teams can develop, test, and deploy microservices
independently, enabling faster development cycles and allowing teams to focus on specific
functionalities. Containers facilitate distribution development by providing a unified
packaging format that can be shared across teams and easily moved between different
environments. Containers are lightweight and share the host OS’s kernel, reducing overhead
compared to virtual machines. Containers start quickly and consume few resources, enabling
rapid scaling based on demand. This is especially valuable for applications with varying
workloads. The ability to quickly provision and scale containers makes them well-suited
for modern, dynamic infrastructures.

 � Weaknesses:

 � While containers offer numerous benefits, managing them at scale can be complex, especially
without proper orchestration tools. Learning and implementing orchestration platforms,
such as Kubernetes, requires expertise and can be overwhelming for small teams or those
new to containerization.

 � While containers provide isolation, they share the host OS kernel. Vulnerabilities in the
kernel could potentially affect multiple containers. Proper security practices must be
followed, such as regularly updating base images, scanning images for vulnerabilities, and
configuring container security settings.

 � Example: Docker containers running the different services of a microservices-based
application orchestrated by Kubernetes. In the example that follows, a Docker file is used
for containerizing a Node.js application. This demonstrates how to package a Node.js app
with its dependencies in a container:

FROM node:14
WORKDIR /app
COPY package.json .
RUN npm install
COPY . .
CMD ["node", "app.js"]

Designing for Diversity with Multi-Cloud Application Strategies42

• Event-driven architecture: This paradigm originates from handling software application events.
Events are software signals that indicate, for example, the completion of a bank transfer. Events
usually finish with a notification given to the end user to inform them that a task was completed
or that its processing has started. This makes event-driven architecture asynchronous in nature,
and software execution doesn’t wait for a task to finish and can perform intermediary tasks
(send notification) while the initial task (bank transfer) continues to be executed. This makes
event-driven architecture ideal and suitable for distributed cloud-native designs.

In the following diagram, we can observe a classic event-driven architecture, where a producer
sends events to consumers who acknowledge the event after processing the corresponding
task. Communication between the parties is centralized and dynamically dispatched through
an event manager, which forwards events/acknowledgments in either direction:

 Figure 3.3 – High-level event-driven architecture

Let’s consider some of the strengths and weaknesses of event-driven architecture:

 � Strengths:

 � High responsiveness and flexibility, as services can react to events in real time

 � Supports asynchronous, non-blocking communication

 � Promotes decoupling, as services don’t need to be aware of the existence of others

 � Weaknesses:

 � Event choreography can be complex to handle, especially in larger systems

 � Debugging can be challenging as there is no direct invocation of services

 � Example: In a banking application, an event can be triggered when a customer makes a
transaction. This event can trigger services such as a balance update and a transaction history
update. In the example that follows, a simple Node.js application to connect to a RabbitMQ
server illustrates how microservices can communicate asynchronously via a message queue:

const amqp = require('amqplib/callback_api');

amqp.connect('amqp://localhost', (error0, connection) => {

Cloud-native design patterns 43

 if (error0) throw error0;
 connection.createChannel((error1, channel) => {
 const queue = 'hello';
 channel.assertQueue(queue, { durable: false });
 channel.consume(queue, (msg) => {
 console.log(`Received: ${msg.content.toString()}`);
 }, { noAck: true });
 });
});

• API gateway: No discussion of cloud-native design patterns would be complete without mentioning
the API gateway. By acting as the grand concierge, the API gateway simplifies client interactions
by providing a single entry point to your system. While an API gateway can do wonders for
request routing and protocol translation, it can quickly become a bottleneck if not managed
correctly. Figure 3.4 illustrates the high-level architecture of an API gateway pattern. It depicts
how a client, or a web app interacts with backend services through a centralized API gateway:

Figure 3.4 – High-level architecture of an API gateway pattern

Let’s consider some of the strengths and weaknesses of an API gateway architecture pattern:

 � Strengths:

 � Simplifies the client interface by aggregating requests to multiple services

 � Centralized management of cross-cutting concerns

 � Enables developers to manage APIs across the life cycle, from creation to deprecation

 � Weaknesses:

 � It can become a bottleneck if not properly designed and managed

 � Adds an extra network hop, which might slightly affect latency

Designing for Diversity with Multi-Cloud Application Strategies44

 � Example: The Amazon API gateway provides developers with a simple, flexible, fully managed
pay-as-you-go service that handles all aspects of creating, deploying, maintaining, monitoring,
and securing APIs at any scale. In the following example, a Node.js application acts as an API
gateway, routing requests to different microservice endpoints (/users and /orders), demonstrating
the central point of processing API requests:

const amqp = require('amqplib/callback_api');

const express = require('express');
const app = express();
const userRouter = require('./userRouter');
const orderRouter = require('./orderRouter');
app.use('/users', userRouter);
app.use('/orders', orderRouter);
app.listen(3000);

• Circuit breaker: Among the arsenal of design patterns, the circuit breaker pattern stands out
for its resilience. The circuit breaker pattern serves to identify failures and contains the logic to
avoid repetitive failures during maintenance, temporary external system outages, or unexpected
system challenges. It acts as a protective mechanism to handle potential disruptions and ensures
smooth operation in the face of adversity.

The circuit breaker will open a failure circuit after a defined threshold of failed attempts has
been exceeded. Take a look at the following diagram:

Figure 3.5 – High-level architecture of a circuit breaker pattern

Cloud-native design patterns 45

Let’s consider some of the strengths and weaknesses of the circuit breaker architecture pattern:

 � Strengths:

 � Prevents resource overload by excessively trying to connect to a failing service

 � Prevents cascading of failures to other services by isolating the failing service

 � Enables automated recovery of services by gradually checking if a service has recovered

 � Weaknesses:

 � Designing a successful circuit breaker can be increasingly complex

 � Synchronizing the state of the circuit breaker across different instances of an application
can be challenging

 � Example: If your application relies on third-party APIs, circuit breakers can be extremely
helpful in managing API failure. In the example that follows, the circuit breaker pattern is
implemented by using the Opossum package in Node.js, showcasing a strategy for handling
failures in distributed systems:

const circuitBreaker = require('opossum');

function asyncFunctionThatCouldFail() {
 return new Promise((resolve, reject) => {
 // simulated function logic
 if (Math.random() > 0.5) resolve('Success!');
 else reject('Failed!');
 });
}

const options = { timeout: 3000, errorThresholdPercentage: 50,
resetTimeout: 30000 };
const breaker = new circuitBreaker(asyncFunctionThatCouldFail,
options);

breaker.fallBack(() => 'Fallback response');
breaker.on('success', (result) => console.log(result));
breaker.fire().catch(console.error);

• Sidecar pattern: The sidecar pattern stands out for its versatility. In the sidecar pattern, each
service instance is paired with a sidecar container that takes over the networking features. It
provides platform-agnostic features such as service discovery, dynamic routing, and circuit
breaking. Figure 3.6 depicts the sidecar pattern in containerized applications, where a main
container running the primary application is paired with a sidecar container:

Designing for Diversity with Multi-Cloud Application Strategies46

Figure 3.6 – High-level architecture of a sidecar pattern

Let’s consider some of the strengths and weaknesses of the sidecar architecture pattern:

 � Strengths:

 � Enables the separation of responsibilities between application logic and network communication

 � Makes the services portable, as they remain decoupled from the network details

 � Weaknesses:

 � It can increase complexity as the number of instances increases

 � The sidecar’s life cycle needs to be managed alongside the service

 � Example: Istio’s Envoy sidecar proxies handle the inbound and outbound network traffic
of the service in a Kubernetes Pod.

• Strangler fig pattern: The strangler fig pattern, named after the fig tree, which gradually envelops
and replaces its host tree, provides a blueprint for incremental system rewriting. In the context
of software architecture, the strangler fig pattern works by creating a new system that gradually
takes over the functionality of the legacy system. The new system is initially small and simple.
However, it gradually expands to replace more and more of the legacy system’s functionality.
The following figure shows the architecture of the strangler fig pattern:

Figure 3.7 – High-level architecture of a strangler fig pattern

Cloud-native design patterns 47

Let’s consider some of the strengths and weaknesses of the strangler fig architecture pattern:

 � Strengths:

 � Allows incremental updates and rewrites, minimizing risk

 � Old and new parts can coexist, enabling gradual replacement

 � Weaknesses:

 � This may lead to a temporary increase in complexity as the old and new parts coexist

 � Requires careful planning to avoid tight coupling between the old and new parts

 � Example: An e-commerce site transitioning from a monolithic application to microservices
could use the strangler fig pattern to gradually replace its inventory management system.
While the old system is still in operation, a new service has been built to handle some of
the requests. Over time, more and more requests are handled by the new service until the
old system can be decommissioned.

• Saga pattern: The saga pattern is a sequence of local transactions where each transaction
updates the data within a single service. It is used in microservices architectures to ensure
data consistency across services. In the event of a failure in one transaction, the saga executes a
series of compensating transactions to undo the impact of the preceding transactions. Figure 3.8
illustrates the saga pattern, which manages transactions across microservices. It ensures that
either all parts of a transaction are completed successfully or compensates for those transactions
that are triggered to revert each step in the case of failure:

Figure 3.8 – High-level architecture of the saga pattern

Let’s consider some of the strengths and weaknesses of the saga architecture pattern:

 � Strengths:

 � It helps maintain data consistency across multiple services in a microservices architecture

 � It provides a mechanism to handle business transactions spanning multiple services by
coordinating distributed transactions

Designing for Diversity with Multi-Cloud Application Strategies48

 � Weaknesses:

 � It adds complexity to the system design, as developers need to design compensatory
transactions for every transaction that could potentially fail

 � It can lead to increased latency due to the asynchronous nature of communication

 � Example: An e-commerce application that manages distributed transactions across an
inventory service, payment service, and shipping service by using the saga pattern to ensure
data consistency.

• Backend for frontend (BFF): In the BFF pattern, the backend for each user experience is
developed separately. This enables the backend to be closely aligned with the needs of the
specific frontend, allowing it to provide exactly the data needed in the optimal form for that
frontend. Figure 3.9 illustrates the BFF pattern, which involves setting up a backend layer that
specifically caters to the needs of a frontend client, such as a browser. This BFF layer acts as an
intermediary, handling and aggregating requests to various services (services A, B, and C) and
ensuring that the browser receives data in the most optimal format for UI rendering:

Figure 3.9 – High-level architecture of the BFF pattern

Let’s consider some of the strengths and weaknesses of the BFF architecture pattern:

 � Strengths:

 � It allows better user experience by aligning the backend requirements closely with the
frontend requirements

 � It simplifies microservices for the frontend developers, as they only need to communicate
with one backend (the BFF) instead of many

 � Weaknesses:

 � It could lead to code duplication if not handled carefully, as similar logic might be
implemented in multiple BFFs

Cloud-native design patterns 49

 � It increases the number of deployable units

 � Example: A media streaming application, such as Netflix, could have separate BFFs for TV,
mobile, and web users, each catering to the unique requirements of that platform

• Command query responsibility segregation (CQRS): The CQRS pattern is an architectural
pattern where the model responsible for updating the data (command) is separated from the
model used to read the data (query). This allows each model to be optimized for its specific
purpose. Figure 3.10 illustrates the CQRS pattern (separating the operations that modify data
(command) from the operations that read data (query)). This architectural pattern enhances
performance, scalability, and security by allowing the read and write workloads to scale
independently and to be optimized according to their specific needs. The UI interacts with
distinct command and query services, which communicate with a common storage mechanism
that has separate models for handling write and read operations:

Figure 3.10 – High-level architecture of the CQRS pattern

Let’s consider some of the strengths and weaknesses of the CQRS architecture pattern:

 � Strengths:

 � It allows the read and write workloads to be scaled independently

 � It enables the optimization of read and write models for their respective operations

 � Weaknesses:

 � It can lead to increased complexity in system design, as maintaining two separate models
requires careful co-ordination

 � It may cause data synchronization issues between the read and write models

 � Example: An e-commerce application could use the CQRS pattern to separate the read
operations (such as browsing products or checking order status) from the write operations
(such as placing orders or adding products to carts), allowing better performance optimization

Designing for Diversity with Multi-Cloud Application Strategies50

• Sharding pattern: In the era of big data, applications often have to deal with an enormous
amount of data. Sharding is a technique where data are partitioned and spread across multiple
databases, which handle a portion of the data load in parallel. This pattern is exceptionally useful
in a cloud-native environment where horizontal scalability is a fundamental requirement. The
ability to add more databases (shards) as the data grows ensures that the application can scale
out effectively. Figure 3.11 illustrates the sharding pattern in database architecture, which is a
method for achieving horizontal scalability. By dividing data into distinct partitions or “shards,"
each database shard manages a subset of the data. This division allows parallel processing and
can enhance the performance and manageability of large datasets, making it an effective strategy
for scaling cloud-native applications:

Figure 3.11 – High-level architecture of the sharding pattern

Let’s consider some of the strengths and weaknesses of the sharding architecture pattern:

 � Strengths:

 � Improves scalability and data management efficiency

 � Enables parallel processing, accelerating query responses

 � Allows for geographical data distribution, aligning with user locality

 � Weaknesses:

 � It can lead to data hotspots if the sharding keys are not chosen carefully

 � Increases complexity, especially around data distribution and query performance optimization

 � Example: A global e-commerce platform could use the sharding pattern to manage its
extensive product data. They could distribute their vast product catalog across different
databases (shards) based on regional popularity, hence improving application performance
and enabling region-specific optimizations.

Designing for multi-cloud 51

In conclusion, understanding and applying these cloud-native design patterns can provide significant
benefits when building and maintaining applications in a multi-cloud environment. These patterns,
with their specific strengths and weaknesses, offer solutions to common challenges faced by developers.
However, selecting the right pattern is a matter of evaluating the needs and constraints of your particular
application and organizational context.

Having examined the cloud-native design patterns and their applicability in the multi-cloud context, we
are now well-equipped to take a deeper dive into designing specifically for multi-cloud environments.

Designing for multi-cloud
Alright, to make this topic more interesting, we will be using metaphors. So, let's get started. Imagine
you’re a globe-trotter setting out on a worldwide journey. You’ve got a map, a backpack filled with
essentials, and an adventurous spirit. However, instead of just one map to guide you, you’ve got maps
for different regions that have unique terrains, climates, and cultures. Navigating through this diverse
landscape requires a keen understanding of these differences and a strategy to effectively use your
resources across multiple regions.

Designing applications for multi-cloud environments presents a similar challenge. With a plethora of
cloud providers that each offer unique capabilities and features, designing applications for a multi-cloud
environment can feel like navigating through multiple maps at once. It’s an expedition into an intricate
landscape of platforms and services that each have their own set of rules, strengths, and constraints.

Why would you want to undertake such a complex journey? The benefits of a multi-cloud approach
are plentiful. It offers improved reliability by eliminating single points of failure, increased flexibility
by providing a wide choice of services, and optimized costs by allowing you to use the most cost-
effective services from multiple providers. It can also help prevent vendor lock-in to a certain extent,
which can be a significant advantage in the ever-evolving cloud landscape.

However, while the rewards can be substantial, so too are the challenges. Managing resources across
different cloud providers that have their own set of APIs, data storage solutions, and security measures
is no easy task. It requires a strategic approach to architecture and design, the careful selection of
technologies, and a deep understanding of the key principles of multi-cloud application design.

This chapter aims to equip you with the compass and the map for your multi-cloud journey. We’ll
delve into the architecture and principles of multi-cloud application design, explore the role of key
technologies, discuss data management strategies, and touch upon cost optimization, among other topics.

Fasten your seat belts; it’s time to embark on the multi-cloud expedition!

Understanding multi-cloud architecture

At its core, a multi-cloud architecture involves the use of two or more cloud computing services from
any number of distinct cloud vendors. It can be a blend of public, private, and hybrid clouds based on
the specific needs of an organization. This design allows businesses to diversify their cloud strategy

Designing for Diversity with Multi-Cloud Application Strategies52

by spreading workloads across multiple platforms, effectively eliminating a single point of failure and
reducing the risks associated with relying on a single provider.

Gaining a comprehensive understanding of the distinct architectural models that inform how
organizations utilize diverse cloud service providers is paramount to optimize resource utilization,
mitigate vendor lock-in, enhance performance, manage risks, and ensure business continuity in a
dynamic and diverse cloud environment. There are primarily three types of multi-cloud architecture:

• Homogeneous cloud architecture: This architecture involves the use of the same cloud service
provider across multiple regions. It’s like setting up parallel universes where each universe
operates independently, but all universes are governed by the same laws or, in our case, the
same cloud provider’s technologies and infrastructure. This type of architecture is often adopted
when organizations want to ensure higher availability, disaster recovery, or data redundancy.
Compliance with data sovereignty laws, where data must reside in the same country where
it’s created or used, also prompts companies to go for this approach. Although this setup has
the advantage of familiarity with a single provider’s technology stack, it doesn’t necessarily
provide the benefits of using different services from different providers, which may be superior
in certain areas.

• Heterogeneous cloud architecture: As the name suggests, this architecture is a medley of
different cloud service providers, where each provider is chosen based on their strengths and
the specific needs of the application. This is like playing to the strengths of each player on a
team; for example, you might use Amazon S3 for its superior storage capabilities, Google Cloud
for its cutting-edge machine learning services, and Microsoft Azure for its extensive enterprise
application services. The heterogeneous model delivers high degrees of flexibility and access to
unique features from different providers. But remember, with this flexibility comes increased
complexity. Developers need to become adept at using different cloud providers’ interfaces,
and the organization must deal with multiple vendor relationships, which can complicate
administration and billing.

• Hybrid multi-cloud architecture: This architecture blends the use of private and public clouds,
marrying the benefits of both worlds. This approach provides a secure environment for sensitive
data on a private cloud or an on-premise data center while leveraging public cloud resources for
high-compute tasks, large volumes of non-sensitive data, or rapid scalability. This approach offers
flexibility, cost-effectiveness, and heightened security. However, it also introduces challenges,
such as the need for secure, seamless integration between public and private environments and
the complexity of managing and governing diverse cloud resources.

In a nutshell, a solid understanding of multi-cloud architecture is crucial for effectively designing and
managing cloud-native applications across multiple cloud platforms. This knowledge will guide you
in choosing the right strategies and tools to build resilient, scalable, and cost-effective applications
in a multi-cloud environment.

Designing for multi-cloud 53

Key principles of multi-cloud application design

In our metaphorical journey, the principles of multi-cloud application design are akin to the essential
survival skills required to navigate the diverse landscapes and weather patterns we encounter. Just as
a seasoned traveler needs to be adaptable, resourceful, and prepared for unexpected challenges, so
too does an application in a multi-cloud environment. Let’s understand some of the key principles of
multi-cloud application design:

• Scalability: Designing applications to handle variable workloads:

Scalability is the ability of an application to efficiently handle increases in workload. In the
context of our journey, it’s like being able to walk, bike, or even climb when the terrain demands
it. An application that is scalable can serve a handful of users just as effectively as it can serve
millions. In a multi-cloud environment, the challenge lies in maintaining this adaptability
across different platforms.

Achieving scalability involves designing applications in a way that their components can be
easily replicated or distributed. Microservices and serverless architectures, which we touched
upon in previous sections, play a significant role in enabling scalability. These architectures
allow the individual components of an application to scale independently according to demand,
a practice known as horizontal scaling.

• Availability: Ensuring continuous service even in the case of failures:

Availability is the degree to which an application is accessible and functional when needed. It’s
akin to having a reliable GPS or compass during our journey, one that continues to work even
when the weather is harsh, or visibility is low.

In a multi-cloud setup, high availability is achieved through redundancy and fault tolerance.
Redundancy is like carrying an extra pair of batteries for your compass, ensuring that you
have a backup if one fails. In application terms, this involves deploying multiple instances of
an application component across different cloud environments so that if one fails, others can
take over.

• Portability: Allowing applications to run on different cloud platforms:

Portability, in our travel metaphor, is akin to a traveler’s ability to easily move and adapt from
one country to another. In a multi-cloud context, it is the ability of an application to be moved
seamlessly from one cloud environment to another.

Containers are a key enabler of portability in a multi-cloud environment. They encapsulate an
application and its dependencies into a single, self-contained unit, allowing it to run consistently
across different cloud environments.

Designing for Diversity with Multi-Cloud Application Strategies54

• Resilience: Making applications capable of dealing with problems without major disruptions:

Resilience equates to our ability to withstand storms and other unforeseen events. For an
application, resilience means its capacity to cope with failures without suffering significant
downtime or data loss.

In a multi-cloud environment, resilience can be achieved through a combination of high
availability, robust error handling, and a strong disaster recovery plan. Techniques such as
automatic retries, circuit breakers, and rate limiting can be used to build fault-tolerant systems.

• Security: Addressing security concerns in a multi-cloud environment:

Security is a crucial aspect that must not be overlooked. It’s like ensuring we’re safe from threats
in the regions we travel to.

Security involves protecting data, applications, and infrastructures from threats. This could
mean implementing encryption, managing user access, ensuring compliance, and more. Given
the distributed nature of multi-cloud environments, a centralized approach to security, such as
using unified threat management platforms or cloud access security brokers, can be effective.

Now that we’ve mastered the survival skills for our journey let’s turn our attention to selecting the
right gear. In the next section, we’ll delve into the technologies that will aid us on this adventure.

Role of domain-driven design
Domain-driven design (DDD) is like our native language, allowing us to communicate effectively
with the local inhabitants of each cloud environment. DDD is an approach to software development
that focuses on understanding the business domain, its problems, and its complexities. It emphasizes
creating a model of the domain, implementing it as code, and constantly refining it based on feedback
from domain experts.

In the context of a multi-cloud environment, DDD helps break down a complex system into more
manageable parts called bounded contexts. These bounded contexts can be seen as individual territories
on our map, each with its unique culture (domain logic) and language (APIs).

Figure 3.12 represents a DDD for an e-commerce website. The main domain is e-commerce, which is
responsible for managing product information, orders, and customer data. Payment, offer, customer,
and shipping are subdomains. Each subdomain is further divided into services, which are self-contained
units of functionality responsible for specific tasks within the domain:

Importance of an API-first approach 55

Figure 3.12 – DDD for an e-commerce website

DDD also introduces the concept of Ubiquitous Language which is a common language between
developers and domain experts. In our journey, it’s like a universal translator, enabling clear communication
and understanding between the team members, irrespective of the cloud environment they are
working with.

In the next section, we will understand the API-first approach, which represents a significant part of
modern software development.

Importance of an API-first approach
Embracing an API-first approach in our multi-cloud journey is like a global adventurer having a
universal translator device. This device helps the adventurer seamlessly communicate and interact
with the locals, regardless of the language they speak.

With the API-first design, APIs are developed upfront and serve as the universal translators for our
applications. They are not just an addition or an afterthought but are the foundational stones that set
the course for the development journey. In the multi-cloud environment, where our applications are
scattered across various landscapes that have their own dialects, the API-first approach becomes our
universal translator. It ensures our applications (no matter where they are hosted) can understand
and interact with each other effortlessly.

These well-crafted APIs are also like handy travel guides, allowing our applications to grow and adapt
independently. They facilitate continuous exploration and adaptation to new experiences in our
multi-cloud journey, much like a resourceful adventurer who learns to thrive in changing landscapes.

Designing for Diversity with Multi-Cloud Application Strategies56

In essence, just as a universal translator is indispensable to a global adventurer, the API-first approach
is fundamental to navigating the complex terrains of multi-cloud environments. So, gear up, and make
sure you pack this vital tool, and let’s venture further into our multi-cloud journey!

Selecting the right technologies for a cloud-native
foundation
Continuing on our metaphorical multi-cloud journey, we now understand the importance of having
a map (cloud-native design patterns) and establishing a common language (API-first approach). Now,
it’s time to assemble the right equipment. Selecting the right technologies for our expedition is akin
to choosing the best gear and equipment. It’s about finding tools that will help us navigate the terrain
more efficiently, keep us safe, and allow us to overcome any obstacles that we might encounter. Let's
touch on a few key tools and technologies that are truly shaping the cloud-native transformation:

• Cloud-native technologies that facilitate multi-cloud application design (Kubernetes, Istio, etc.):

To navigate through different cloud environments, we need versatile tools that are recognized
and can function well in all of them. In the cloud world, such universal tools are cloud-native
technologies. These technologies are designed to leverage the full benefits of the cloud computing
model, making them an essential part of our multi-cloud journey.

Consider Kubernetes, for example. It’s like our multi-purpose Swiss army knife. Kubernetes is
an open-source platform designed to automate the deployment, scaling, and management of
containerized applications. With its impressive array of features, such as service discovery, load
balancing, and automated rollouts and rollbacks, Kubernetes aids in maintaining and managing
our applications across different cloud platforms. With recent developments Kubernetes (k8s)
is becoming the operating system for Multi-cloud environments.

Another powerful tool in our multi-cloud gear is Istio. Imagine it as our compass guiding us
through the intricate network pathways of our applications. Istio is a service mesh that provides
a way to connect, secure, control, and observe services. In a multi-cloud environment, Istio
provides consistent visibility and network control, helping to manage complex communication
across multiple cloud platforms.

• Function-as-a-Service (FaaS) and its role in multi-cloud:

As we journey through multiple cloud environments, we need to travel light, carrying only
what’s necessary for each phase of the journey. This is where FaaS comes into the picture.

FaaS is like our pack of dehydrated meals, ready to be used as needed. FaaS allows developers to
execute chunks of code (or functions) in response to events without the complexity of building
and maintaining the infrastructure.

In a multi-cloud environment, FaaS enables developers to focus on writing the code while the
cloud provider manages the underlying infrastructure. It supports the development of scalable,

Data management in multi-cloud 57

event-driven applications and allows you to pay only for the computing time consumed—a
perfect addition to our lightweight travel gear.

• Service mesh and its benefits:

As we traverse the terrain of multiple cloud environments, it becomes challenging to manage
the intricate pathways that our applications take. This is where a service mesh comes in handy.
It’s like our GPS system, managing the communication between services, ensuring they find
the quickest and safest routes.

A service mesh creates a special infrastructure layer for managing communication between
services. It makes sure that requests are delivered reliably through the complicated network of
services making up a modern cloud-based application. In a multi-cloud scenario, a service mesh
ensures that this communication is seamlessly maintained across different cloud platforms.

Remember, when selecting technologies or tools, consider your specific use cases, what problems are
you trying to solve, your team’s skillset, and the trade-offs associated with each technology. The goal is to
choose the technologies that best align with your business needs and enhance your multi-cloud strategy.

Data management in multi-cloud
As we venture deeper into our multi-cloud journey, it’s time to explore the cave systems that span
different regions: data management in multi-cloud environments. Just as the careful mapping and
understanding of caves is crucial to avoid getting lost, effective data management strategies are pivotal
for ensuring the seamless operation of our multi-cloud expedition. Here are some of the major topics:

• Data storage and migration strategies:

The first step is to understand how we’re going to store our precious data artifacts and how
we can move them around. In the world of multi-cloud, this translates to data storage and
migration strategies.

Selecting the right data storage for each cloud provider is akin to choosing the right type of
gear for each segment of our journey. We need to consider the nature of the data, the frequency
of access, any latency requirements, and the cost when choosing a storage solution. We might
choose different types of storage solutions, such as block storage for databases or object storage
for multimedia, based on the specific requirements of each application.

In multi-cloud environments, we might need to transfer data between different cloud providers
or from on-premise data centers to the cloud. Various tools and services can assist with this,
such as AWS’s Database Migration Service (DMS) or Google Cloud’s Transfer Service.
Remember, when migrating data, it’s crucial to plan carefully, considering factors such as data
integrity, migration speed, downtime, and cost.

Designing for Diversity with Multi-Cloud Application Strategies58

• Ensuring data consistency and managing data replication:

Ensuring data consistency in a multi-cloud environment can feel like trying to synchronize
watches across different time zones when you are traveling to different countries. When data
is replicated across different cloud environments to improve availability and durability, it’s
essential to ensure that all replicas remain consistent.

This is a non-trivial task, given the potential for network partitions and other failure scenarios.
Techniques such as eventual consistency, strong consistency, or transactional consistency can be
employed depending on the nature of the application and the trade-offs between consistency,
availability, and partition tolerance that the application can tolerate.

Data replication, on the other hand, can be thought of as having multiple copies of our map.
If one gets lost or damaged, we have others as a backup in multi-cloud environments; data is
often replicated across different regions and cloud providers to improve resilience and reduce
latency for users. The strategy for data replication depends on the nature of the data and the
specific requirements of the application.

• Implementing effective data backup and disaster recovery plans:

As every seasoned explorer knows, you always need a contingency plan. For our multi-cloud
journey, this translates to effective data backup and disaster recovery plans. Just as we might
carry a first-aid kit for medical emergencies, we need to have plans in place for data emergencies,
such as data corruption, data breaches, or catastrophic system failures.

Backup strategies in multi-cloud environments can leverage the unique strengths of different
cloud providers. For instance, we might choose to use Amazon S3’s object life cycle management
for the long-term archiving of data or Google Cloud Storage for frequently accessed data due
to its lower cost.

Disaster recovery in a multi-cloud environment could mean having a failover system in a different
cloud provider. If a disaster occurs and our primary cloud provider becomes unavailable, we
can switch to the failover system in the second cloud provider, minimizing downtime and
service disruption.

For instance, consider an e-commerce application that uses AWS for user management and
order processing, Google Cloud for inventory management, and Azure for analytics. To ensure
data consistency across these services, the application could use a distributed database, such as
Google’s Cloud Spanner. To backup data, it could regularly export data to a separate storage
service. In case of a disaster, the application could switch to a standby replica in a different
region or cloud.

Remember, successful data management in multi-cloud requires a clear understanding of the nature of
the data, the regulatory requirements, the capabilities of different cloud providers, and a well-defined
data life cycle management strategy.

Monitoring and observability in multi-cloud 59

Monitoring and observability in multi-cloud
Designing cloud-native applications for multi-cloud environments necessitates a solid strategy for
monitoring and observability. It is instrumental in maintaining the operational health of your
application while improving its performance across various platforms. In the following list, we will
see a few points to get started with (a detailed explanation is mentioned in Chapter 7, Troubleshooting
Multi-Cloud Applications):

• The significance of comprehensive monitoring and observability: Monitoring and observability
are central to understanding your application’s behavior, predicting and mitigating issues, and
ensuring seamless performance. Comprehensive monitoring gives you a panoramic view of your
application’s performance across different cloud environments, offering actionable insights to
enhance reliability and user experience. Observability, an evolution of monitoring, allows you
to infer the internal state of your system from its outputs, which is essential in a distributed
and complex multi-cloud environment.

• Multi-cloud monitoring and observability tools: Several tools cater to the need for monitoring
and observability across multi-cloud platforms. These tools provide crucial metrics for diagnosing
problems and optimizing performance. For instance, Datadog provides an extensive platform for
monitoring and analytics, ensuring observability across multi-cloud environments. Prometheus
(with Grafana) is a popular open source tool for monitoring applications in Kubernetes
environments. Tools such as New Relic, Splunk, and others provide similar capabilities.

Imagine deploying your application across AWS, Google Cloud, and Azure. With the use of an
effective monitoring and observability tool, you’ll have a comprehensive view of your application’s
performance across all these platforms. Suppose there’s a sudden increase in latency or error rates
in a specific service; in that case, these tools will enable swift identification and resolution, thereby
maintaining the application’s high availability and reliability.

In essence, monitoring and observability aren’t optional extras but integral components of successful
multi-cloud application design. Choosing the right tools and building a robust monitoring strategy
paves the way for reliable and high-performing applications across multiple cloud platforms.

In the next section, let’s understand how cost can be optimized in multi-cloud.

Optimizing costs in multi-cloud
Wisely budgeting your resources is a critical part of a globetrotter’s adventure. Just like carefully
rationing food and water supplies on a trek, effectively managing costs is crucial when traversing
the multi-cloud terrain. As organizations scale and expand their applications across multiple cloud
platforms, managing and optimizing costs becomes a crucial aspect of their multi-cloud strategy.
More details are provided in the following list:

• Understanding and managing costs across multiple cloud platforms

Designing for Diversity with Multi-Cloud Application Strategies60

Every cloud service provider has a unique cost structure, which is analogous to different
currencies across countries. Juggling these costs can feel much like a globetrotter dealing with
fluctuating exchange rates. To navigate this complexity, a thorough understanding of each
provider’s pricing model, the diligent analysis of usage reports, and accurate forecasting of
future costs are fundamental.

• Strategies for cost optimization

The strategies for cost optimization in a multi-cloud environment are as varied as the techniques
a traveler might employ to stretch their budget. Selecting the appropriate services, leveraging
off-peak hours, and turning off idle resources can significantly impact your financial footprint.

Automation can also be a powerful tool for cost management, much like an experienced guide
who knows the lie of the land. Lastly, negotiation can lead to more favorable pricing, much like
bargaining can help a traveler get the best deals.

As an example, consider an e-commerce company that hosts its application on AWS, Google Cloud,
and Azure. By using cost optimization strategies, they can match their resource usage with the
varying demand during peak shopping seasons, optimizing costs while ensuring that their application
performance doesn’t dip. With effective monitoring, they can identify underutilized resources and
decommission them, resulting in substantial savings.

Thus, cost optimization in a multi-cloud environment is not just about reducing costs. It’s about making
strategic decisions that allow you to make the most of your cloud investments, ensuring you’re getting
maximum value from each dollar spent.

In the next section, let’s delve into a few case studies to sharpen our understanding of multi-cloud
application design.

Case studies
In this section, we will delve into some compelling case studies that encapsulate the process and
benefits of successful multi-cloud application design.

Case Study 1: E-commerce platform using microservices and
sharding

An e-commerce company faced scalability issues with its monolithic architecture as the user base grew.
They needed a solution that could handle the increasing demand while ensuring reliability, scalability,
and efficient resource utilization. Additionally, they faced challenges in managing the large volume of
data generated by their operations, requiring a scalable data management approach:

• Approach:

 � Microservices: Decomposed the monolithic application into smaller, independent microservices
to enable independent development, deployment, and scalability

Case studies 61

 � Scaling: The microservices architecture allowed the scaling of specific components based
on demand, optimizing resource allocation and reducing costs

 � Sharding: Distributed data across multiple databases to handle large data volumes

• Resolution:

 � Scalability: The microservices architecture enabled the independent scaling of components
to handle increasing user demand efficiently

 � Reliability: The microservices architecture enhanced reliability and fault tolerance by isolating
failures within specific components

 � Resource utilization: The scaling of specific microservices based on demand optimized
resource allocation and reduced costs

 � Effective data management: Sharding improved data management by distributing the data
load across multiple databases, improving performance and scalability

• Key takeaways:

 � The microservices architecture enables independent scalability and fault isolation, improving
reliability and resource utilization

 � Sharding is an effective approach for managing large volumes of data, allowing for horizontal
scalability and improved performance

 � Careful planning and management are essential during the transition from a monolithic
architecture to microservices and for implementing data sharding

 � The monitoring, testing, and proper management of distributed microservices and data
shards are critical for system performance and availability

 � Cloud-native technologies and platforms enhance the scalability, resilience, and management
of distributed systems

Case Study 2: Financial services firm leveraging circuit breaker
and replication

A financial services firm operating across multiple cloud platforms required high availability and
data durability. They needed a solution to ensure continuous access to critical data and mitigate the
risk of system failures:

• Approach:

 � Replication: Implemented the replication pattern to create multiple copies of data across different
cloud providers, ensuring high data availability and an additional layer of data protection.

Designing for Diversity with Multi-Cloud Application Strategies62

 � Circuit breaker: Implemented the circuit breaker pattern to handle potential failures
in the distributed system. If a service in one cloud provider experienced an outage, the
circuit breaker prevented any continuous attempts to access the failing service, preventing
system-wide outages.

• Resolution:

 � High availability: The replication of data across multiple cloud providers ensured continuous
access to critical data, even in the event of a failure in one provider

 � Data durability: The replication pattern provided an additional layer of data protection,
reducing the risk of data loss and enhancing data durability

 � Resilience and reliability: The circuit breaker pattern improved system resilience by
preventing cascading failures and system-wide outages, resulting in reduced downtime and
improved customer satisfaction

• Key takeaways:

 � The replication pattern provides high data availability and an additional layer of data protection
by creating multiple copies across different cloud providers

 � The circuit breaker pattern helps handle potential failures in a distributed system, preventing
system-wide outages and improving resilience

 � Implementing data replication and circuit breakers requires careful consideration regarding
data consistency, synchronization, and failover strategies

 � Regular testing and monitoring are crucial for ensuring the effectiveness and reliability of
the replication and circuit breaker mechanisms

 � Leveraging multiple cloud providers can enhance system availability, durability, and resilience
by mitigating the risk of a single provider failing

Case Study 3: Media streaming company adopting eventual
consistency and API gateway

A global media streaming company faced challenges in managing high levels of traffic across different
geographical regions. They needed a solution that could ensure high availability, consistency, and
performance while effectively managing their microservices architecture:

• Approach:

 � Eventual consistency: Adopted the eventual consistency pattern, which allows temporary
inconsistencies in data but ensures their eventual convergence to a consistent state. This
approach provided high availability and improved the overall user experience, especially
in distributed systems.

Case studies 63

 � API gateway: Implemented the API gateway pattern to manage the multiple microservices
within their application effectively. The API gateway served as a single entry point for clients,
enabling better security, rate limiting, request handling, and overall service manageability
and performance.

• Resolution:

 � High availability: The eventual consistency pattern allowed the media streaming company
to handle high traffic levels across different geographical regions, ensuring that users could
access the service even during peak usage periods

 � Improved user experience: While temporary inconsistencies may occur, the eventual
consistency pattern ensured that all users would eventually receive consistent and up-to-date
data, enhancing the overall user experience

 � Efficient microservices management: The API gateway pattern streamlined the management
of multiple microservices by providing a centralized entry point. It enhanced security,
allowed effective rate limiting, and facilitated easier request handling, leading to improved
manageability and performance

• Key takeaways:

 � The eventual consistency pattern provides high availability and a better user experience
by allowing temporary inconsistencies while ensuring eventual convergence regarding
consistent data

 � The API gateway pattern simplifies the management of microservices by serving as a centralized
entry point, improving security, rate limiting, and request handling

 � Implementing eventual consistency requires careful consideration of data replication,
synchronization, conflict resolution, and recovery mechanisms

 � Proper load balancing, caching, and monitoring are crucial for ensuring the scalability,
performance, and reliability of the API gateway

 � The global distribution of services, along with eventual consistency and an API gateway,
enables media streaming companies to effectively handle high traffic levels, provide a seamless
user experience, and manage their microservices architecture

Through these case studies, it’s evident that designing applications for multi-cloud environments
can bring about substantial improvements in resilience, scalability, operational efficiency, and cost
optimization. However, the journey towards successful multi-cloud implementation necessitates a
comprehensive understanding of multi-cloud architecture and the appropriate use of cloud-native
design and practices.

Designing for Diversity with Multi-Cloud Application Strategies64

Best practices for multi-cloud application design
After an in-depth exploration of designing cloud-native applications for multi-cloud platforms, it’s
crucial to distill this knowledge into a series of best practices. By following these guidelines, cloud-
native developers can effectively navigate the complexities of multi-cloud environments and build
robust, scalable, and efficient applications. More details can be seen in the following list:

• Embrace cloud-native principles: It’s vital to adopt cloud-native principles, such as microservices,
containerization, and automation, to ensure your applications are portable, scalable, and resilient
across different cloud environments.

• Invest in interoperability: The success of a multi-cloud strategy depends heavily on interoperability
between various cloud platforms. Prioritize open standards and interfaces that ensure smooth
interplay between technologies across diverse platforms.

• Leverage service meshes and orchestration tools: Tools (such as Kubernetes) and service
meshes (such as Istio) can be instrumental in managing deployments and facilitating efficient
communication between services in multi-cloud environments.

• Incorporate comprehensive observability: Invest in comprehensive observability using
monitoring, tracing, and logging tools that provide insights into your applications’ performance
across various cloud platforms.

• Focus on data management: Implement robust data management strategies that address data
storage, migration, replication, and backup across multiple cloud platforms. This ensures data
consistency and aids in disaster recovery.

• Plan for cost optimization: Understanding and managing costs across multiple cloud platforms
is vital. Leverage cost management tools and strategies, such as auto-scaling and right-sizing,
to keep costs in check.

• Prioritize security: Multi-cloud environments can add complexity to security management.
Embrace a security-first approach, employ robust security practices, and leverage cloud-native
security tools to ensure the integrity of your applications.

• Continuous learning and adaptation: The cloud technology landscape is continually evolving.
Stay updated with the latest trends, learn from real-world case studies, and be ready to adapt
your strategies as needed.

By adhering to these best practices, developers can effectively confront the challenges of multi-cloud
environments, harnessing their advantages to deliver highly performant, resilient, and cost-efficient
applications. This chapter’s content serves as a roadmap in your journey towards designing successful
multi-cloud applications. If you continue on this learning path you’ll be well-equipped to create cloud-
native applications that are truly platform-agnostic.

Summary 65

Summary
As we draw a line under our multi-cloud expedition chapter, let’s pause and take a breath, enjoying
the spectacular panorama from this vista. The obstacles we’ve negotiated, the enlightenment we’ve
acquired, and the best practices we’ve unearthed—they all contribute to making this journey enriching.

Let’s reflect on the rich insights we’ve gleaned regarding the design of cloud-native applications
for multi-cloud platforms. We have delved into the unique aspects of multi-cloud environments
and understood the nuances of multi-cloud architecture, as well as the instrumental role played by
cloud-native technologies, containers, and microservices in such settings. We have explored essential
principles for designing applications in this landscape and navigated the labyrinth of data management
in multi-cloud.

We have also underscored the vital role of monitoring and observability, identified the significance of
cost optimization, and illustrated these principles with real-world case studies. Finally, we consolidated
our understanding into a set of best practices for effective multi-cloud application design.

However, as any seasoned adventurer will tell you, the trek is far from over. Our compass points
towards our next challenge: managing data in multi-cloud landscapes. As we wrap up this chapter
and gear up for the next leg of our journey, we anticipate encountering new hurdles and gaining fresh
insights. Until then, mull over the landscapes we’ve traversed, the wisdom we’ve accrued, and the
expertise we’ve garnered. Remember, on this multi-cloud exploration journey, every step taken is a
step forward. See you in the next chapter.

4
Crafting and Deploying in the

Multi-Cloud as a Developer

As we continue our expedition into the multi-cloud landscape, we’ve reached the stage of setting up
our base camp. This base camp is the heart of our operations – the place where we plan our routes,
store our supplies, and prepare for the journey ahead. In our technological journey, this translates to
developing and deploying cloud-native applications in a multi-cloud environment.

To fully exploit the benefits of the multi-cloud environment, you, as a developer, along with platform
engineers, need to embrace new practices and methodologies. You have to think in terms of cloud-
native platform which consists of Infrastructure as Code (IaC), continuous integration/continuous
deployment (CI/CD), GitOps and DevOps, and container orchestration.

In earlier chapters, we focused more on the cloud-native application side of topics with practical
hands-on exercises. In this chapter, we will learn how to employ the strategies, tools, and practices
that are fundamental to developing and deploying cloud-native applications across multiple cloud
environments, so, as a developer, you will be stepping into understanding the platform and continuing
the journey of setting up the cloud-native platform for your cloud-native applications. We’ll start
with IaC, an approach that allows you to automate the provisioning and management of your cloud
resources. Then, we’ll explore CI/CD practices that enable rapid, reliable, and consistent application
delivery. Next, we’ll delve into GitOps and DevOps methodologies that empower teams to achieve
efficient, automated, and predictable deployment processes. Finally, we’ll cap it off with a thorough
exploration of containerization and orchestration using Docker and Kubernetes.

Just as every mountaineer needs the right gear and a solid plan to tackle the peaks, in this chapter, we’ll
equip you with the essential strategies and tools for scaling the heights of cloud-native development
in a multi-cloud world.

With each topic, we’ll delve into case studies that demonstrate the practical application of these
practices. These real-life examples will illuminate the value of these approaches, providing you with
concrete evidence of their effectiveness.

Crafting and Deploying in the Multi-Cloud as a Developer68

The following topics will be covered in this chapter:

• IaC

• CI/CD

• GitOps and DevOps practices

• Service meshes in multi-cloud environments

• Containerization and orchestration

• Multi-cloud networking and security

Fasten your seatbelt as we take off on this journey through the world of developing and deploying
cloud-native applications on multi-cloud environments. Let’s begin!

IaC
Before we start this journey, let’s say you need to set up a base camp. You need to choose the right
location, set up tents, arrange supplies, and ensure everything is ready for the expedition team. Now,
imagine doing this for multiple base camps across different mountains. It’s a daunting task, isn’t it?

IaC is like your detailed base camp setup plan. It’s a documented, repeatable process that ensures
you can set up the base camp efficiently each time, without manually arranging the supplies over and
over again. With IaC, you describe and automate the process of creating and managing your cloud
resources. Instead of manually setting up each base camp, you write a plan. This plan, when executed,
automatically sets up your base camp exactly as you’ve specified. Need to replicate it? Simply re-run
the plan. If a base camp gets destroyed, rebuild it instantly with the same plan.

Picture yourself as a developer in a time before cloud computing was a common phrase. Your task is to
set up a server. You are given a piece of hardware, and you go about setting it up manually – installing
the operating system, configuring it to specifications, installing the necessary software, and ensuring
it works perfectly. It’s a tedious and time-consuming process, and it’s also prone to human error. If a
server fails or needs to be replicated, you need to do the entire process again. It’s almost like baking
a cake from scratch each time someone requests a piece.

Enter the cloud era, and we start baking cakes in bulk! We’re no longer dealing with one or two servers;
instead, we’re managing hundreds – sometimes thousands – of servers. In a multi-cloud environment,
this complexity only magnifies. Would you still bake each cake from scratch? This is where IaC steps
in, transforming the way we manage our cloud resources.

IaC is like your favorite cake recipe. It’s a documented, repeatable process that ensures you can produce
the same delicious cake each time without manually mixing the ingredients over and over again. With
IaC, you describe and automate the process of creating and managing your cloud resources and your
target environments (development, production, and so on). Instead of manually clicking through
the UI of your cloud provider, you write code. This code, when executed, automatically sets up your

IaC 69

cloud resources exactly as you’ve specified. Need to replicate it? Simply rerun the code. If a server
fails, rebuild it instantly with the same code.

IaC has revolutionized the way infrastructure is managed and provisioned. It allows teams to define
infrastructure configurations through code, providing numerous benefits in terms of consistency,
scalability, and efficiency. However, just as every base camp setup plan has its strengths and weaknesses,
so does IaC. Let’s explore them.

Strengths of IaC

IaC offers several strengths that contribute to more efficient, consistent, and reliable management of
IT infrastructure. Here are some of the key strengths of IaC:

• Consistency and reproducibility: IaC ensures that every base camp (infrastructure) is set up
in a consistent and reproducible manner. It’s like having a detailed checklist for setting up each
base camp, ensuring that nothing is missed, and everything is set up correctly.

IaC enables the provisioning of infrastructure in a consistent and reproducible manner.
Infrastructure configurations are defined as code, eliminating manual configuration drift and
ensuring consistent environments across development, staging, and production.

• Agility and speed: With IaC, you can set up and modify your base camps (infrastructure)
rapidly. It’s like having a team of experienced mountaineers who can quickly set up the base
camp based on the plan, allowing you to focus on the expedition (developing applications).

With IaC, infrastructure changes can be managed and deployed rapidly. Infrastructure code
can be version-controlled, allowing for easy tracking of changes, rollbacks, and collaboration
among team members. This agility leads to faster time-to-market for applications and enables
teams to respond quickly to evolving business requirements.

• Scalability and elasticity: IaC allows you to easily scale your base camps (infrastructure)
to meet the needs of your expedition team. Need more tents or supplies? Simply adjust the
plan and execute it. By defining scalable patterns in code, infrastructure can be automatically
provisioned, scaled up, or scaled down based on workload patterns or defined policies. This
ensures efficient resource utilization and cost optimization.

• Automation and efficiency: IaC automates the provisioning and configuration of infrastructure,
reducing manual effort and human errors. Infrastructure changes can be validated and
tested through continuous integration and deployment pipelines, ensuring reliable and
efficient deployments.

Crafting and Deploying in the Multi-Cloud as a Developer70

Weaknesses of IaC

Some of them are as follows:

• Learning curve and complexity: Adopting IaC requires a learning curve as team members need
to acquire knowledge of infrastructure provisioning tools and programming concepts. Teams
may require training and upskilling to utilize IaC frameworks and understand the underlying
infrastructure components effectively.

• Initial investment and setup: Implementing IaC may require an initial investment in tooling,
infrastructure, and resources. Configuration management tools, infrastructure orchestration
platforms, and cloud provider-specific integrations may be necessary, adding complexity to
the setup process.

• Limited portability: IaC solutions are often tied to specific cloud providers or infrastructure
platforms. While some tools offer multi-cloud support, there may be limitations in porting
infrastructure code across different providers. Care should be taken to abstract provider-specific
configurations and maintain portability whenever possible.

• Version control and collaboration: Effective utilization of IaC requires disciplined version
control practices and collaboration among team members. Managing conflicts, ensuring proper
branching and merging strategies, and establishing code review processes become important
to maintain code quality and minimize errors.

Tools to implement IaC

By understanding the strengths and weaknesses of IaC, organizations can make informed decisions
about adopting and implementing this practice. It’s like choosing the right mountaineering equipment
for your expedition. You need to consider the terrain, the weather, and the specific needs of your team.
Leveraging the consistency, agility, scalability, and automation provided by IaC while addressing the
learning curve, setup complexity, portability, and collaboration challenges will empower teams to
build and manage robust, scalable, and efficient infrastructure in a modern software delivery pipeline.

There are numerous tools out there to implement IaC. Terraform, developed by HashiCorp, stands
out for its cloud-agnostic approach. It allows you to write code in a high-level configuration language
that describes the resources you need. This code is then translated into the appropriate service calls for
the cloud providers of your choice. Ansible, another popular open source tool, uses a simple language
called YAML to define automation jobs in a way that is straightforward to read.

Note
There are other tools as well, such as Chef, Puppet, Pulumi, AWS CloudFormation, Azure
Resource Manager, Google Cloud Deployment Manager, and more, available to use for the
IaC approach.

IaC 71

Let’s delve into a practical scenario where IaC was game-changing. Picture a fintech start-up that
operates in a multi-cloud environment, for reasons of resilience, redundancy, and avoiding vendor
lock-in. Initially, their small team of developers had to manually configure resources on AWS and
Google Cloud, which consumed significant time and often led to inconsistent configurations across
the platforms.

Upon adopting Terraform as their IaC tool, they managed to drastically cut down the time spent on
resource configuration. By writing Terraform code once, they were able to use the same configurations
across both AWS and Google Cloud, ensuring consistency. The developers were now able to focus
more on delivering features and less on tedious configuration tasks. Whenever they needed to scale
their infrastructure, they simply adjusted a few parameters in their Terraform code and let the tool
do the heavy lifting. This case shows how IaC can significantly streamline resource management in
a multi-cloud environment.

Here’s an example of a Terraform script snippet that creates a virtual private cloud (VPC) in AWS
and a VPC network in Google Cloud:

Configure the AWS Provider
provider "aws" {
 region = "us-west-1"
}
Create a VPC in AWS
resource "aws_vpc" "aws_vpc" {
 cidr_block = "10.0.0.0/16"
 tags = {
 Name = "my-aws-vpc"
 }
}
Configure the Google Cloud Provider
provider "google" {
 project = "volksdevenv"
 region = "us-central1"
}
Create a VPC network in Google Cloud
resource "google_compute_network" "gcp_vpc" {
 name = "my-gcp-vpc"
 auto_create_subnetworks = "false"
}
Outputs to display the created resource IDs
output "aws_vpc_id" {
 value = aws_vpc.aws_vpc.id
}
output "gcp_vpc_name" {
 value = google_compute_network.gcp_vpc.name
}

Crafting and Deploying in the Multi-Cloud as a Developer72

Let’s take a look at what this Terraform script does:

• It sets up providers for both AWS and Google Cloud

• It creates a VPC in AWS with a specified CIDR block

• It creates a VPC network in Google Cloud with auto-created subnetworks disabled

• It outputs the IDs of the created resources

The following diagram illustrates two main steps for deploying IaC to multiple cloud providers, which
are plan and apply. When changes are made to the infrastructure code, the developer needs to double-
check and stage the new code before actually applying the changes to a production environment:

Figure 4.1 – Terraform flow

Note
Terraform provides handy commands to plan and apply changes to our infrastructure code.
The plan command stages the changes for review and can later be committed thanks to the
apply command.

As a cloud-native developer working in a multi-cloud environment, mastering IaC is an essential skill.
It helps you automate and streamline resource management, enforce consistency, quickly recover from
failures, replicate infrastructure, and ultimately focus more on building great applications.

In the next section, we will explore CI/CD, an important aspect of software engineering, and its
best practices.

CI/CD
Continuous Integration (CI) encourages developers to merge their code changes into a central
repository frequently, preferably several times a day. This frequent integration can help prevent the
dreaded “merge hell.” It allows teams to catch bugs and conflicts early and rectify them when they’re
still fresh and relatively easy to fix.

When CI is combined with continuous deployment (CD), we have a robust system that takes the
freshly integrated code and automatically tests, builds, and deploys it. This can mean deploying to

CI/CD 73

a staging environment for further testing, or it could mean deploying straight to production if the
automated tests provide enough confidence in the quality of the build. This continuous process ensures
rapid feedback on the software and quicker delivery of features to the end users.

There are various tools available to implement CI/CD. Jenkins, an open source automation server,
provides numerous plugins for building, deploying, and automating any project. CircleCI, another
popular tool, offers a cloud-based solution that’s easy to set up and highly customizable.

CI/CD involves planning, coding, building, testing, releasing, and delivering software in a streamlined
process for efficient development and deployment. All these stages are depicted in the following
flow diagram:

Figure 4.2 – CI/CD flow diagram

Consider the story of a software company that embraced the multi-cloud approach for its cloud-
native application. Despite enjoying the benefits of multi-cloud, such as preventing vendor lock-in
and improved reliability, the company faced challenges in managing deployments across different
cloud platforms. Deployment processes varied, leading to inconsistencies, increased error rates, and
slower time-to-market.

The adoption of Jenkins for CI/CD changed the game for them. Jenkins, with its flexibility and vast
array of plugins, allowed the company to standardize its build, test, and deployment processes across
multiple clouds. When a developer pushes a change, Jenkins automatically triggers the build process,
runs tests, and, if all tests pass, deploys the application to the respective cloud platforms. This consistent
and automated process reduced errors and accelerated the company’s ability to deliver updates and
new features.

For any cloud-native developer in a multi-cloud environment, CI/CD is not just a nice-to-have – it’s
essential. It streamlines the process from code commit to deployment, ensuring quicker feedback and
faster delivery of value to users. Moreover, it supports the consistency that’s required when working
with multiple cloud platforms.

Crafting and Deploying in the Multi-Cloud as a Developer74

Let’s look at the following diagram and draw the scope of each phase in the software development life
cycle. CI relies on the frequent commits of new code, unit tested, to centralized repositories. In this
phase, it is important to guarantee consistent and tested environments. CD relies heavily on automated
functional and performance tests before a release approval. CD comes at the end of the life cycle to
automatically deploy the release. The deployments are frequently fully automated and don’t require
human intervention. User and system feedback is collected and gracefully taken into account in a
new iteration of the CI/CD cycle:

Figure 4.3 – Phases in the software development life cycle

Let’s consider a sample CI/CD Jenkins pipeline that demonstrates automated testing, building, and
deployment in the Kubernetes environment:

pipeline {
 agent any
 stages {
 stage('Build') {
 steps {
 sh '''docker build -t python-hello-world .
 docker tag python-hello-world jeveenj/python-hello-
world
 docker push jeveenj/python-hello-world
 '''
 }
 }
 stage('Test') {
 steps {
 sh 'docker run --rm python-hello-world:latest python
-m unittest'
 }
 }
 stage('Deploy') {
 steps {
 sh 'kubectl apply -f deployment.yaml'

CI/CD 75

 }
 }
 }
}

The preceding Jenkins pipeline can be divided into two parts: CI and CD. Let’s discuss them in detail:

• CI:

 � Build stage: This stage, stage('Build'), automates the process of building the application’s
Docker image. This ensures that the code can be compiled and packaged successfully, catching
potential build issues early.

 � Test stage: This stage, stage('Test'), runs automated tests within a container to verify
the application’s functionality and identify any bugs or regressions. This helps maintain code
quality and prevent problems from reaching production.

• CD:

 � Deploy stage: This stage, stage('Deploy'), automates the deployment of the application
to a Kubernetes cluster using kubectl apply. This streamlines the delivery process and
enables frequent releases with minimal manual intervention.

CI/CD best practices

In today’s fast-paced software development landscape, implementing effective CI/CD practices is
crucial for delivering high-quality software rapidly. CI/CD enables development teams to automate
various stages of the software delivery pipeline, ensuring faster feedback loops, improved collaboration,
and accelerated time to market. Here are some best practices to consider when implementing CI/CD:

• Automation is key:

 � Automate the build, test, and deployment processes to eliminate manual and error-prone
tasks. Use build automation tools such as Jenkins, Travis CI, or GitLab CI/CD to automate
the build process.

 � Implement CI by configuring triggers to automatically build and test code whenever changes
are pushed to the repository.

• Leverage version control:

 � Integrate version control systems comprehensively into your CI/CD process. Utilize branching
strategies such as Git Flow to manage features, fixes, and releases efficiently. This approach
helps in tracking and merging changes effectively, ensuring that the code base is always in
a deployable state.

 � Leverage version control systems such as Git to automate code integration.

Crafting and Deploying in the Multi-Cloud as a Developer76

• Adopt a microservices architecture:

 � Design your applications using a microservices architecture, where complex applications
are decomposed into smaller, loosely coupled services.

 � Implement CI/CD pipelines for each microservice, enabling independent development,
testing, and deployment of individual services. This allows for faster iterations and deployment
of new features.

• Maintain a single source of truth:

 � Establish a central repository for your CI/CD configurations, scripts, and IaC templates.
This ensures consistency and provides a single source of truth for your CI/CD pipeline.

 � Version control these artifacts to track changes and rollbacks, and also maintain a history
of your pipeline configuration.

Tip
Jenkins provides tools to reuse IaC templates thanks to Jenkins Shared Libraries.

• Implement CI:

 � Practice CI by frequently integrating code changes into a shared repository. This ensures
early detection of integration issues and reduces the risk of conflicts during code merges.

 � Automate unit tests, code quality checks, and static analysis tools such as SonarQube or
ESLint to catch bugs, vulnerabilities, and code quality issues as early as possible.

• Automated testing at all levels:

 � Implement a comprehensive testing strategy that includes unit tests, integration tests, and
end-to-end tests. Each test level serves a specific purpose and provides confidence in the
stability and correctness of your application.

 � Use test automation frameworks and tools such as JUnit, Selenium, or Cypress to enable
fast and reliable test execution within the CI/CD pipeline. Execute tests in parallel to speed
up the feedback loop.

• CD with canary releases:

 � Implement CD by automating the deployment process to staging and production environments.
Use deployment automation tools such as Kubernetes, Docker, or AWS Elastic Beanstalk.

 � Implement canary releases to gradually roll out new features or changes to a subset of users.
Monitor key metrics and user feedback during canary deployments to ensure stability before
proceeding with full deployment.

CI/CD 77

• IaC:

 � As we explored in detail in the previous section, IaC allows you to define your infrastructure
using code and employ tools such as Terraform or AWS CloudFormation to provision and
manage your infrastructure resources. This approach allows infrastructure changes to be
versioned, tested, and deployed alongside application code.

 � Treat your infrastructure code as part of your application code, applying the same CI/CD
practices for infrastructure changes. Infrastructure changes should go through the same
testing and deployment pipelines as application code changes.

• Monitor and collect feedback:

 � Implement robust monitoring and observability practices to gain insights into the performance
and behavior of your applications in production. Use tools such as Prometheus, Grafana,
or Datadog to monitor key metrics, track errors, and identify performance bottlenecks. Set
up alerts and notifications to proactively detect and respond to any issues or anomalies in
your application’s behavior.

 � Collect feedback from users through various channels, such as surveys, user interviews, or
feedback forms. Leverage analytics tools such as Google Analytics or Mixpanel to understand
user behavior, preferences, and pain points.

 � Use the feedback and analytics data to drive continuous improvements in your software,
prioritize feature enhancements, and optimize user experiences.

 � Establish a feedback loop with your development team, product managers, and stakeholders
to incorporate user feedback into the development process and align your roadmap with
customer needs.

By adopting these CI/CD best practices, development teams can streamline their software delivery
pipeline, reduce manual errors, increase productivity, and ultimately deliver high-quality software
faster. Embracing automation, test-driven development, and IaC principles enables teams to iterate
rapidly, respond to customer needs, and stay ahead in today’s competitive software landscape.

Just as the mountaineers continuously refine their strategies based on feedback, weather conditions,
and the terrain, development teams should continuously refine their CI/CD practices. The mountain
is ever-changing, and the strategies that worked yesterday may not work today. And so is the software
landscape ever-evolving. By staying agile and adaptable, both the mountaineers and the development
teams can overcome any challenges they face and reach their respective peaks.

In the next section, we will explore DevOps and GitOps practices, which are like the compass and map
for our mountaineers, guiding them through their journey and ensuring they stay on the right path.

Crafting and Deploying in the Multi-Cloud as a Developer78

Scaling mountainous success – a tale of DevOps
and GitOps
Alright, let's once again wear our globe-trotter hat and imagine that there is a team of mountaineers
embarking on a challenging ascent to the summit of a towering mountain. The climbers, representing
the developers, are responsible for pushing forward and establishing progress, while the support team
at the base camp, analogous to the operations team, plays a crucial role in providing critical support
and ensuring the overall stability of the journey.

In the traditional approach, the climbers would operate independently, with the base camp responding
to their progress. This siloed approach often leads to communication gaps, delays, and potential risks.
This is where DevOps comes in, bridging the gap between the climbers and the base camp, transforming
them into a cohesive unit sharing a common goal.

DevOps acts as an advanced communication system, enabling seamless connectivity between the
climbers and the base camp. Updates are exchanged in real time, collective decisions are made
collaboratively, and everyone remains aligned with the overall plan. This cultural shift fosters
collaboration, transparency, and shared responsibility, ensuring that everyone contributes effectively,
rather than operating in isolation.

GitOps, on the other hand, serves as the detailed map and compass that guides the team’s ascent. It
establishes a single source of truth, a repository where all infrastructure configurations and application
manifests are meticulously documented. Every change, every decision, every deviation from the
established plan is meticulously recorded, providing a clear historical record of the team’s journey. This
transparency facilitates rollbacks in case of unforeseen challenges and enables proactive error detection.

In essence, DevOps represents the foundation of effective teamwork, fostering collaboration and
communication, while GitOps provides the foundational tools to ensure that everyone is on the
same page and that the software journey is conducted in a controlled and efficient manner. Together,
these practices empower teams to scale the mountains of software development and operations with
unwavering resilience. The following table gives you the key differences between DevOps and GitOps:

Factors DevOps GitOps
Principles DevOps enables practices to break

the silo between development
and operations.

GitOps involves implementing
intelligent and automated operations

CI/CD DevOps enables CI/CD with the
usual push.

GitOps powers CD by
introducing pull

Deployment DevOps covers the imperative and
declarative approaches.

GitOps has declarative IaC.

Monitoring DevOps provides monitoring at
all layers.

GitOps monitors the states of desired
versus current user-used operators.

Scaling mountainous success – a tale of DevOps and GitOps 79

Factors DevOps GitOps
Automatization DevOps automates development

and operations and closely
binds them.

GitOps closely binds the monitoring
and deployment processes.

Scope DevOps encompasses a broad
range of practices, encompassing
collaboration, CI/CD, automation,
and tools.

GitOps focuses specifically on using
Git as the single source of truth for
infrastructure and applications.

Focus DevOps emphasizes cultural
transformation, breaking down
silos between development and
operations teams.

GitOps focuses on automating
infrastructure, environments, and
application deployments, ensuring
consistency with the desired state
defined in Git repositories.

Tools DevOps utilizes a wide range
of tools, from source code
management systems to CI/
CD pipelines and configuration
management tools.

GitOps primarily relies on Git,
containerization, and orchestration
tools such as Kubernetes.

Applications DevOps applies to a wide range
of applications, from traditional
monolithic applications to cloud-
native microservices architectures.

GitOps is primarily used for
containerized applications, leveraging
their flexibility and scalability.

Table 4.1 – Key differences between DevOps and GitOps

As we have seen, DevOps and GitOps are complementary approaches that aim to streamline and
optimize software delivery processes. DevOps provides the overarching framework for collaboration
and communication, while GitOps acts as the orchestrator, ensuring that infrastructure and applications
are aligned with the desired state defined in Git repositories. By adopting these practices effectively,
organizations can achieve greater agility, reliability, and efficiency in their software development and
operations endeavors.

The following diagram shows a classic GitOps pipeline. A developer pushes code to the Git repository,
which automatically triggers the build and registry of a container image. The new infrastructure
configuration is staged for the developer, who performs a pull request to obtain the latest update. The
developer needs to validate the changes before merging and deploying the changes to production:

Crafting and Deploying in the Multi-Cloud as a Developer80

Figure 4.4 – GitOps pipeline

Challenges

However, as with any journey, adopting DevOps and GitOps practices can present certain challenges.
Let’s explore some common challenges and strategies for overcoming them:

• Challenge – cultural transformation:

 � Silos and resistance to change: Organizations often have separate teams with different
priorities and processes. Breaking down these silos and fostering a culture of collaboration
requires strong leadership, open communication, and creating shared goals and responsibilities.
Encourage cross-functional teams, promote knowledge sharing, and incentivize collaboration
to overcome resistance to change.

 � Lack of a DevOps mindset: Embracing a DevOps mindset requires a shift in mindset and
a focus on continuous improvement, collaboration, and accountability. Foster a culture of
experimentation, learning from failures, and embracing automation and feedback loops.
Provide training, mentorship, and resources to help team members understand and adopt
the DevOps principles and practices.

• Challenge – tooling and automation:

 � Tool selection and integration: The DevOps landscape is filled with a variety of tools and
technologies. Evaluate and select tools that align with your organization’s needs and goals.
Focus on tool integration to create a seamless toolchain and automate processes. Establish clear
guidelines and standards for tool adoption to maintain consistency and avoid tool proliferation.

 � Automation challenges: Implementing automation requires upfront investment and ongoing
maintenance. Start small by identifying manual, repetitive tasks that can be automated and
gradually expand automation efforts. Involve cross-functional teams in the automation

Scaling mountainous success – a tale of DevOps and GitOps 81

process to gain buy-in and ensure the automation solutions meet their needs. Regularly
review and update automation scripts and processes to adapt to changing requirements.

• Challenge – security and compliance:

 � Security as code: Incorporate security practices into the entire software delivery life cycle by
treating security as code. Implement automated security testing, vulnerability scanning, and
code analysis as part of the CI/CD pipeline. Integrate security practices into the development
process and ensure that security considerations are addressed early and continuously.

 � Compliance requirements: Identify and understand compliance requirements specific to
your industry and organization. Implement controls and processes to ensure compliance with
regulations and standards. Leverage IaC and configuration management tools to establish
auditable and repeatable processes that meet compliance requirements.

• Challenge – GitOps adoption:

 � GitOps principles and workflows: Educate teams on the principles and workflows of GitOps,
emphasizing the importance of version control, declarative infrastructure, and the use of
Git as a single source of truth. Provide training and resources to help teams understand the
benefits of GitOps and how to implement them effectively.

 � Infrastructure automation: Ensure that infrastructure and configuration changes are managed
through version control, enabling traceability, reproducibility, and rollback capabilities.
Leverage IaC tools such as Terraform or AWS CloudFormation to codify infrastructure
changes. Automate the deployment and synchronization of infrastructure changes using
GitOps practices.

By understanding and addressing these challenges, organizations can successfully adopt DevOps and
GitOps practices, as well as cultivate a culture of collaboration, invest in the right tools and automation,
prioritize security and compliance, and educate teams on the principles and workflows of GitOps.
With these strategies, organizations can overcome barriers and fully realize the benefits of DevOps
and GitOps in their software delivery pipeline.

Consider, for instance, the story of a cloud-native software company juggling operations across multiple
cloud platforms. Managing these operations became a major headache. Changes needed to be tracked
across each platform, leading to inconsistencies, misconfigurations, and slower recovery from outages.

The introduction of DevOps and GitOps practices brought about a revolution. The company began
using tools such as Jenkins for CI/CD, Kubernetes for orchestration, and Terraform for infrastructure
management. But the most transformative tool was Git. With Git at the center of its operations, the
company could now handle infrastructure changes in the same way it managed code changes. A simple
pull request could update a Kubernetes deployment configuration, which would then be automatically
applied to the clusters on all cloud platforms. This reduced human error, simplified rollback processes,
and improved recovery times.

Crafting and Deploying in the Multi-Cloud as a Developer82

The adoption of DevOps and GitOps is essential for any cloud-native developer operating in a multi-
cloud environment. It provides consistency, speeds up recovery times, and eases the management
of complex systems. The practices of CI/CD, IaC, and container orchestration all contribute to an
effective DevOps strategy. Having explored DevOps and GitOps, let’s delve into the service mesh, a
crucial orchestra layer for modern microservice choreography.

Service meshes in multi-cloud environments
As our mountaineering team traverses the challenging terrain of multiple cloud environments, managing
the intricate pathways our applications take becomes increasingly challenging. This is where a service
mesh comes in handy. It’s like our GPS, managing the communication between services, ensuring
they find the quickest and safest routes.

As mentioned in Chapter 3, Designing for Diversity with Multi-Cloud Application Strategies, a service
mesh acts as a control tower for service communication in complex applications, ensuring reliable
connections even across multiple cloud platforms. It’s like a hidden network conductor, orchestrating
smooth data flow between services regardless of their location.

Consider Istio, for example. It’s like the compass guiding our mountaineers through the intricate
network pathways of our applications. Istio is a service mesh that provides a way to connect, secure,
control, and observe services. It provides traffic management capabilities, allowing intelligent routing
and load balancing of traffic. It also offers robust security features, including identity and credential
management and enforcement of network policies. Moreover, it provides insights into your applications
through telemetry, logging, and tracing capabilities.

However, implementing a service mesh in a multi-cloud environment can be complex. It requires
careful planning and configuration to ensure seamless communication across different cloud platforms.
It also requires monitoring and management to ensure its reliable operation.

Despite these challenges, a service mesh is a powerful tool in the multi-cloud toolkit. Let’s have a look
at some of the essential features that a service mesh provides to a cloud-native application deployed
in a multi-cloud environment:

• Service discovery: This feature allows developers to register and keep track of all services used
within the application. Moreover, an agnostic service mesh can enable service discovery across
multiple cloud environments.

• Load balancing: A service mesh can allow traffic control, such as load balancing, across multiple
instances of a service:

Service meshes in multi-cloud environments 83

Figure 4.5 – Service mesh as a load balancer

• External traffic control: In addition to managing the traffic within the network, a service mesh
can also facilitate access to services by external parties. Some service mesh tools have integrated
API gateways to help manage both internal and external traffic.

Service mesh provides the visibility, control, and security needed to manage complex, microservices-
based applications across multiple cloud platforms. By leveraging a service mesh, developers can
focus on building and deploying applications, while the service mesh handles the complexities of
inter-service communication.

The following diagram shows the architecture of a service mesh, which in this case uses a proxy
instance called a sidecar. This sidecar is linked to each microservice and is responsible for security
and monitoring. The services, attached sidecars, and their interaction are usually referred to as the
data plane. In a separate layer, the control panel ensures tasks such as instance creation, monitoring,
and managing network security:

Figure 4.6 – Architecture of a service mesh

Crafting and Deploying in the Multi-Cloud as a Developer84

Let’s discuss the strengths and challenges of service mesh.

Strengths

Here are its strengths:

• Improved communication and visibility: A service mesh acts as a centralized control plane for
service-to-service communication, providing features such as service discovery, load balancing,
and traffic routing. This improves overall network visibility and makes troubleshooting easier.

• Resilience and fault tolerance: Service meshes implement features such as circuit breaking,
retries, and timeouts to handle service failures gracefully without cascading downtime. This
increases the overall resilience and availability of applications.

• Security and authentication: Service meshes can enforce strong authentication and authorization
policies for service communication, preventing unauthorized access and malicious attacks. They
also enable features such as mutual TLS encryption to secure data in transit.

• Observability and monitoring: Service meshes provide comprehensive metrics and tracing
data for service interactions, enabling deep insights into application performance and behavior.
This helps with identifying bottlenecks, optimizing resource utilization, and improving overall
service quality.

• Microservices architecture support: Service meshes are well-suited for microservices
architectures, allowing independent development and deployment of services while ensuring
reliable and secure communication.

Challenges

Here are some of the challenges:

• Complexity: Implementing and managing a service mesh can introduce additional complexity,
especially for large and complex deployments. Choosing the right tools and practices is crucial
for effective management.

• Performance overhead: Service mesh components such as sidecars can introduce some performance
overhead, especially in resource-constrained environments. Optimizing configurations and
choosing efficient implementations can mitigate this impact.

• Vendor lock-in: Choosing a specific service mesh solution can lead to vendor lock-in, making
it difficult to switch to other technologies or platforms in the future. Opting for open source
solutions and focusing on interoperability can help with avoiding this.

• Operational overhead: Managing and monitoring a service mesh requires additional operational
effort. Automation tools and skilled personnel are needed to handle this overhead effectively.

• Security considerations: While service meshes improve security, they also introduce new
attack surfaces. Implementing proper security practices and securing sidecar configurations
are essential.

Containerization and orchestration 85

Overall, the benefits of service mesh often outweigh the challenges for applications with complex
microservice architectures and strict requirements for security, reliability, and observability. However,
it’s important to carefully consider the potential drawbacks and choose the right tools and practices
for your specific needs.

In the next section, we will learn about containerization and orchestration, as well as their strengths
and challenges.

Containerization and orchestration
This section dives deeper into the dynamic duo (containerization and orchestration), exploring
the strengths and challenges of containerizing and orchestrating your applications to achieve agile,
efficient, and resilient deployments. Get ready to witness the magic of containerized applications
taking center stage!

Containerization

Traditionally, Docker has been the dominant containerization platform. Containerization stands out as
a promising option, offering lightweight and efficient container runtime capabilities while maintaining
the core functionalities of Docker Engine. Its streamlined architecture enhances performance and
security, making it an attractive choice.

Another notable alternative is CRI-O, an open source container runtime built on containers. It
excels in lightweightness and flexibility, further reducing overhead and improving overall efficiency.
Additionally, CRI-O enjoys strong support from the Kubernetes community, making it a suitable
choice for Kubernetes deployments.

Beyond container runtimes, additional containerization tools provide higher-level abstractions,
simplifying container management and orchestration. Popular alternatives include Podman, Buildah,
and Skopeo. Podman mimics Docker’s functionalities, while Buildah focuses on image creation and
manipulation. Skopeo facilitates image sharing and replication across different registries.

Note
Kubernetes is deprecating Docker as a container runtime after v1.20. However, this doesn't
mean that Kubernetes can't run applications that are packaged as Docker containers. Rather,
it signifies a shift in the underlying container runtime being used by Kubernetes.

Selecting the right containerization solution

The ideal containerization solution depends on specific project requirements. For Kubernetes users,
CRI-O is a natural choice due to its native support within the platform. Lightweight and flexible options
such as containerd or CRI-O are suitable for applications seeking minimal overhead and efficient

Crafting and Deploying in the Multi-Cloud as a Developer86

resource utilization. For higher-level abstractions, Podman, Buildah, and Skopeo offer comprehensive
management and orchestration capabilities.

The containerization landscape is evolving rapidly, with new technologies constantly emerging. While
Docker has left an indelible mark, lightweight, efficient, and secure solutions such as containerd and
CRI-O are paving the way for a more streamlined and secure containerization experience. Cloud-
native developers should stay abreast of these advancements to effectively leverage these tools and
build resilient, agile, and scalable cloud-native applications.

The following table provides a comparative analysis of two lightweight container runtimes: containerd
and CRI-O. Both alternatives are necessary in the container ecosystem as they provide a runtime
environment for executing containers and managing images. The table compares the two alternatives
across different features, such as runtime type, container format, orchestration platforms support,
image registry support, security, network, and performance features. As discussed, choosing the
right containerization solution will depend on your project requirements, and a table similar to the
following can help you make a wise decision:

Feature containerd CRI-O
Runtime type Lightweight container runtime Lightweight container runtime
Container format OCI OCI
Orchestration
platform support

Kubernetes, Docker Swarm,
Mesosphere DC/OS

Kubernetes

Image
registry support

Docker Hub, Quay.io, Google
Container Registry

Docker Hub, Quay.io, Google
Container Registry

Security features Sandboxing, seccomp, user namespaces Sandboxing, seccomp,
user namespaces

Networking CNI CNI
Performance Faster than Docker Engine Faster than containerd

Table 4.2 – Comparison between containerd and CRI-O

Note
Virtual machines (VMs) virtualize the hardware to run many different operating systems on
a single host. Containers virtualize the operating system, allowing multiple tasks to run on a
single operating system instance.

Let’s discuss the strengths and challenges of containerization.

Containerization and orchestration 87

Strengths

Here are its strengths:

• Isolation: Each container runs in an isolated environment with its own filesystem, network,
and resources. This improves security and stability by preventing conflicts between applications
and resource exhaustion.

• Portability: Containers are packaged with all their dependencies, making them independent
of the underlying infrastructure. They can be easily moved between different environments
(physical or virtual machines, cloud platforms, and so on) without modifications.

• Scalability: Containers are lightweight and start up quickly, enabling you to easily scale your
applications by adding or removing containers on demand. This improves resource utilization
and responsiveness.

• DevOps efficiency: Containers streamline the development and deployment process. Developers
can build and test their applications in isolated environments, and operations teams can easily
deploy and manage applications across different environments.

• Microservices architecture: Containerization facilitates the development and deployment
of microservices architectures, where applications are broken down into small, independent
services that can be easily scaled and updated.

Challenges

Here are its challenges:

• Complexity: Managing a large number of containers can be complex. Tools and processes are
needed to manage container life cycles, security, and networking.

• Security: While containers provide isolation, they still require proper security measures to
prevent vulnerabilities and attacks. Shared kernel and runtime environments can introduce
additional security risks.

• Storage: Container images can consume significant storage space, especially when dealing
with large applications or numerous microservices. Efficient storage and image management
strategies are necessary.

• Networking: Configuring and managing network connectivity between containers and with
external services can be a challenge, especially in complex deployments.

Despite these challenges, the benefits of containerization often outweigh the drawbacks. With the right
tools and processes, containerization can significantly improve the agility, efficiency, and scalability
of your applications.

Crafting and Deploying in the Multi-Cloud as a Developer88

Kubernetes

Now, imagine if our team of climbers was quite large, each with a backpack, and they needed to work
together to reach the summit. This is where Kubernetes comes in. Kubernetes is like the expedition
leader, who coordinates the climbers, ensuring they work together effectively. It manages the climbers
(containers), ensuring they have the resources they need, are properly balanced, and can recover
quickly in case of any mishaps.

Kubernetes architecture

Kubernetes is a container orchestration system that automates the deployment, scaling, and management
of containerized applications. Kubernetes is composed of several different components (listed here),
each of which plays a specific role in the overall architecture:

• etcd: etcd is a distributed key-value store that stores the state of Kubernetes. This includes
information about all of the Pods, Services, and other resources that are running in the cluster.

• Controller manager: The controller manager is responsible for maintaining the state of
Kubernetes. This includes tasks such as creating and deleting pods, scaling pods, and ensuring
that pods are running on the correct nodes.

• Scheduler: The scheduler is responsible for assigning pods to nodes. This is done based on
several factors, such as the availability of resources, the load on the nodes, and the affinity and
anti-affinity rules for the pods.

• API server: The API server is the main entry point for interacting with Kubernetes. It exposes
a RESTful API that can be used to create, delete, and manage resources.

• Kubelet: Kubelet is a process that runs on each node in the cluster. It is responsible for running
pods and ensuring that they are healthy.

• Kube-proxy: Kube-proxy is a process that runs on each node in the cluster. It is responsible
for routing traffic to the pods that are running on the node.

• Container runtime: The container runtime is the software that is responsible for running
containers. Kubernetes supports several different container runtimes, such as Docker and CRI-O.

Containerization and orchestration 89

As discussed previously, Figure 4.6 presents different components of the Kubernetes architecture:

Figure 4.7 – Kubernetes architecture

Kubernetes provides features such as load balancing, network traffic distribution, scaling, and automated
rollouts and rollbacks, making it the go-to tool for container orchestration. Let’s explore the strengths
and weaknesses of Kubernetes.

In this section, we will provide a Kubernetes deployment file. This deployment is designed to manage
and scale a collection of Pods, each running an instance of the Docker image. This step effectively
demonstrates how a containerized application, defined in a Dockerfile, can be orchestrated and managed
at scale in a Kubernetes environment. The deployment configuration ensures consistent, automated
deployment of our application, maintaining the desired number of replicas for high availability and
load balancing.

Crafting and Deploying in the Multi-Cloud as a Developer90

Assuming the Docker image created from your Dockerfile is named python-hello-world and
is available in a Docker registry (such as Docker Hub), the Kubernetes Deployment file will look
something like this:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: python-hello-world-deployment
 labels:
 app: python-hello-world
spec:
 replicas: 3
 selector:
 matchLabels:
 app: python-hello-world
 template:
 metadata:
 labels:
 app: python-hello-world
 spec:
 containers:
 - name: python-hello-world
 image: <your-docker-username>/python-hello-world:latest
 ports:
 - containerPort: 80

This file tells Kubernetes to create a deployment that will ensure three replicas of the python-
hello-world container are running at all times. containerPort is set to 80, which is the port
we exposed in the Dockerfile.

Note
The preceding code snippet can be found in this book’s GitHub repository: https://github.
com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/
main/Chapter-4.

Strengths

Kubernetes excels in several key areas that make it a popular choice for organizations of all sizes:

• Powerful orchestration: Kubernetes automates many of the tasks involved in managing
containerized applications, such as scaling, load balancing, service discovery, and self-healing.
This frees up developers to focus on building applications, while Kubernetes handles the
underlying infrastructure.

https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-4
https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-4
https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-4

Containerization and orchestration 91

• High scalability and availability: Kubernetes is designed to handle large-scale applications,
seamlessly scaling them up or down based on demand. It distributes containers across multiple
nodes, ensuring that applications remain available, even if one node fails. This high availability
ensures that users can always access your applications, even in the event of hardware issues.

• Declarative configuration and rolling updates: Kubernetes utilizes declarative configuration
files (YAML or JSON) to define the desired state of your applications. This means you specify
the desired state, and Kubernetes works to ensure that the application always matches that state.
This approach simplifies deployment, versioning, and rolling updates, allowing you to update
applications gradually without disrupting service.

• Vibrant ecosystem and community support: Kubernetes has a thriving ecosystem of tools
and plugins, as well as a strong community that provides support and solutions to common
challenges. This ecosystem makes it easier to find the resources you need to develop, deploy,
and manage your containerized applications.

Challenges

Despite its strengths, Kubernetes also presents some challenges that you should be prepared for:

• Steep learning curve: Kubernetes has a complex architecture and an extensive set of features,
which can make it challenging to learn and master. This learning curve may be particularly
steep for teams new to container orchestration.

• Infrastructure complexity: Kubernetes operates at a lower level of the infrastructure stack,
requiring the setup and management of additional components, such as etcd, kube-proxy, and
kube-dns. This can add complexity and overhead to managing Kubernetes clusters.

Addressing challenges

To mitigate these challenges, organizations can consider using managed Kubernetes services or cloud-
based Kubernetes platforms. Managed Kubernetes services provide a hands-off approach to cluster
management, while cloud-based Kubernetes platforms offer built-in features and integrations to simplify
deployment and management. Consider a cloud-native software company developing an application
with a microservices architecture. They decide to deploy their microservices as Docker containers,
ensuring that each service runs in isolation with all its dependencies. However, they quickly realized
that managing each container manually across multiple cloud platforms is not feasible. That’s when
Kubernetes entered the picture. With Kubernetes, they can manage their containers across all platforms
from a single control plane. This improved their deployment speed, reliability, and resource utilization.

From this narrative, it’s clear how crucial Docker and Kubernetes are to any cloud-native developer
working in a multi-cloud environment. Containerization with Docker provides a consistent and
reliable environment for your applications to run, while Kubernetes allows seamless orchestration of
your containerized applications across multiple cloud platforms.

Crafting and Deploying in the Multi-Cloud as a Developer92

Multi-cloud networking and security
In the context of our mountaineering expedition, effective communication and safety are paramount.
The climbers use radios for communication and adhere to safety protocols to mitigate risks. This is
analogous to the networking and security aspects in a multi-cloud environment.

In single-cloud or multi-cloud deployments, networking ensures seamless communication between
applications hosted on different cloud platforms. It involves setting up load balancers, configuring
network policies, establishing private connections, and more. Each cloud provider offers its own set
of networking services, and understanding how to use them for optimal communication between
services is a key skill for a cloud-native developer.

Security, on the other hand, is about protecting your applications and data from threats. In a multi-
cloud environment, security becomes even more complex due to the distributed nature of applications
and data. Security must be implemented at all levels – application, data, network, and access control.
This includes configuring firewalls, managing access controls, encrypting data at rest and in transit,
and regularly auditing the systems for potential vulnerabilities.

Let’s consider our software company embarking on a multi-cloud strategy. They have applications
deployed on AWS, Azure, and Google Cloud. These applications need to communicate with each other
to provide a unified service to the end users. The company uses virtual private networks (VPNs)
and load balancers to establish secure and efficient communication between the applications across
the different cloud platforms.

However, networking is just one part of the puzzle. The company also needs to ensure that their
applications and data are secure. They implement firewalls to protect against unauthorized access,
use identity and access management (IAM) to control who can access what resources, encrypt their
data to protect it from being compromised, and regularly conduct security audits to identify and fix
potential vulnerabilities.

In this scenario, the company is like a group of climbers communicating via radio and following safety
protocols to ensure a successful expedition. Just as the climbers need to adapt their communication
and safety protocols based on the terrain and weather conditions, the company needs to adapt its
networking and security strategies based on the specific requirements and features of each cloud platform.

As a cloud-native developer, understanding multi-cloud networking and security is crucial. It allows
you to design and implement robust, secure, and efficient applications that can leverage the benefits
of multi-cloud environments. It’s like being the climber who knows how to use the radio effectively
and follows the safety protocols diligently – a valuable asset in any mountaineering expedition.

Summary 93

Summary
By embarking on a mountaineering expedition metaphor, we ventured through the landscape of cloud-
native application development in a multi-cloud realm. We began with the essentials of automation,
containerization, and orchestration, drawing parallels between Docker as the climber’s backpack and
Kubernetes as the expedition leader coordinating the journey.

While navigating intricate multi-cloud networking and security, we likened this to climbers adhering to
communication and safety protocols. We explored the significance of robust networking for application
interaction and security measures to safeguard data and applications across diverse cloud platforms.

In the next chapter, we’ll shift our focus to the secure and compliant handling of data within the
intricate multi-cloud environment. Comparable to a skilled navigator ensuring safe passage through
unpredictable terrain, cloud-native developers must master strategies for managing data, ensuring
security, and complying with regulations across various cloud platforms.

Part 3:
Managing and Operating

Cloud-Native Apps in
 Multi-Cloud

This part takes you through the essentials of managing data, security, and the compliance of cloud-
native applications in multi-cloud environments, emphasizing best practices in these areas. You’ll
explore how to effectively handle data privacy and DevSecOps and align with CIS/CSA benchmarks.
Additionally, it focuses on optimizing costs for cloud-native applications, including implementing
shift-left cost strategies and FinOps practices. Moreover, it delves into troubleshooting strategies for
cloud-native applications, covering the roles, tools, and best practices for SRE and DevOps, including
chaos engineering. This comprehensive approach ensures you have the insights and techniques to
maintain the reliability and resilience of cloud-native applications across multiple cloud platforms.

This part has the following chapters:

• Chapter 5, Managing Security, Data, and Compliance on Multi-Cloud

• Chapter 6, Maximizing Value and Minimizing Cost of Multi-Cloud

• Chapter 7, Troubleshooting Multi-Cloud Applications

5
Managing Security, Data, and

Compliance on Multi-Cloud

We now arrive at a critical juncture that demands our utmost attention: the intersection of data
management, security protocols, and compliance regulations. This chapter is not merely a guide but
a technical manual, designed to equip cloud-native developers with the concrete skills and knowledge
required to navigate this complex multi-cloud terrain.

In a multi-cloud architecture, data doesn’t reside in a monolithic storage system but is often distributed
across various cloud services. This distribution poses unique challenges for data integrity, security,
and compliance with legal regulations such as the General Data Protection Regulation (GDPR)
and industry-specific standards such as the Health Insurance Portability and Accountability Act
(HIPAA) for healthcare or the Payment Card Industry Data Security Standard (PCI DSS) for finance.

Within the chapters, we will explore five main topics, which are as follows:

• Managing data and security in multi-cloud environments

• Introduction to security in cloud-native multi-cloud environments

• DevSecOps best practices for cloud-native apps in multi-cloud environments

• Managing compliance across multiple clouds environments

• Identity and access management (IAM) across multiple clouds environments

• Data privacy and protection

By the end of this chapter, you’ll have an understanding of the technical intricacies involved in managing
data, implementing security measures, and ensuring compliance in a multi-cloud environment.

Managing Security, Data, and Compliance on Multi-Cloud98

Managing data and security in multi-cloud environments
In this section, we will explore the profound significance of data security and privacy in the dynamic
multi-cloud environment. We will look into best practices for securing data across multiple cloud
platforms, address data residency and sovereignty requirements, and navigate the intricate web of
data privacy and compliance considerations.

Understanding data security and privacy in multi-cloud

It is evident that data plays a central role in the functioning and vitality of cloud-native applications. In
this context, data serves as the lifeblood, fueling the operation and functionality of these applications.
Data encompasses a wide range of information, from user data and application state to configurations
and logs. It holds immense value, but its exposure to threats (such as data breaches, data loss, data
tampering, denial-of-service (DoS) attacks, and so on) can be catastrophic. In the multi-cloud
environment, where data traverses different platforms and boundaries, safeguarding its integrity and
privacy becomes paramount. Let’s delve into the details of data security and privacy within the multi-
cloud landscape and explore best practices that are pivotal in protecting our digital assets against
ever-evolving threats.

Data security and privacy in multi-cloud

It is important that navigating the multi-cloud landscape requires a robust defense strategy to protect
data security and privacy. Encryption serves as the first line of defense, transforming data into
unreadable formats that can only be decrypted with the correct key. But encryption is just the tip of
the iceberg. Data access controls act as additional layers of fortification, ensuring that only authorized
personnel can access specific datasets. These controls are implemented through IAM policies, which
can be fine-tuned to grant permissions at granular levels.

Best practices for data security

In a multi-cloud environment, securing data requires a multi-faceted approach that goes beyond mere
encryption. Various encryption techniques, such as the Advanced Encryption Standard (AES) and
Rivest-Shamir-Adleman (RSA), are essential for protecting data at rest and in transit. But the security
measures don’t stop there. Data access controls are implemented through IAM policies, which can
be configured to provide granular permissions. These policies ensure that only authorized users can
access specific datasets, thereby enhancing security. Additionally, data integrity is maintained through
cryptographic hash functions, which ensure that the data has not been tampered with during storage
or transit. Next are some best practices for data security in a multi-cloud environment:

• Use IAM to enforce the principle of least privilege (PoLP)

• Utilize AES for data at rest and Transport Layer Security (TLS) for data in transit

• Conduct periodic reviews of security policies and access rights

Managing data and security in multi-cloud environments 99

• Adhere to local laws regarding data storage and transfer

• Standardize security measures across all cloud platforms

• Prepare and practice responses to potential data breaches

• Ensure that APIs have strong authentication and are accessed over secure connections

• Implement automated backup solutions and a disaster recovery (DR) strategy

• Monitor all environments for unusual activities indicative of a breach

• Protect data life cycle stages from creation, through usage, to deletion

• Use tools that can manage security across multiple clouds

• Regularly train staff on new threats and best security practices

Data residency and sovereignty

When it comes to data residency and sovereignty present another layer of complexity. Different
jurisdictions have varying regulations about where data can be stored and processed. For example,
the European Union’s GDPR imposes stringent rules about data storage and transfer. Understanding
these regulations is crucial for compliance. Developers can manage this through data localization
strategies and by leveraging regional cloud services that comply with local laws.

Automated compliance checks and data portability

Given the complexity of adhering to multiple compliance frameworks, automated compliance
checks are invaluable. Tools that can scan your configurations and compare them against compliance
benchmarks can save time and reduce the risk of human error. These tools can be integrated into the
CI/CD pipeline to ensure continuous compliance as code is developed and deployed. Furthermore,
data portability is essential for both operational flexibility and contingency planning, such as DR.
Developers should be familiar with each cloud provider’s data export tools and APIs and should design
data models that are easily portable.

By delving into these nuanced aspects of data security and privacy, developers arm themselves with the
knowledge and tools to navigate the complex terrains of multi-cloud environments. Just as a seasoned
traveler would not embark on a journey without a well-stocked kit and a detailed map, a prudent
developer should not venture into multi-cloud computing without a comprehensive understanding
of its security and privacy implications.

Implementing best practices for data protection

It is important to remember that safeguarding data is not merely a matter of good intentions or
theoretical understanding; it demands the meticulous implementation of practical strategies and
tools. Just as a seasoned traveler wouldn’t rely solely on a compass but would also carry a map, GPS,

Managing Security, Data, and Compliance on Multi-Cloud100

and survival gear, a cloud-native developer must employ a comprehensive toolkit for data protection.
This toolkit should include encryption, data access controls, and methodologies for maintaining data
integrity and confidentiality. The following are toolkits for data protection:

• Encryption techniques: Encryption is the cornerstone of data protection. While encryption
algorithms such as AES and RSA are widely used, it’s crucial to understand their appropriate
use cases. AES is generally faster and suitable for encrypting large datasets, while RSA is often
used for secure key exchanges. Implementing encryption at both the data-at-rest and data-in-
transit stages is essential. For data at rest, disk-level or database-level encryption can be used.
For data in transit, Secure Sockets Layer (SSL)/TLS protocols are the industry standards.

The following example uses Node.js’s crypto module to demonstrate basic encryption
and decryption functions using the AES-256-CBC algorithm. It generates a random key and
initialization vector (IV), encrypts a text string, and then decrypts it, showcasing a method
to secure sensitive data:

const crypto = require('crypto');

const algorithm = 'aes-256-cbc';
const key = crypto.randomBytes(32); // Store this key securely
for later decryption
const iv = crypto.randomBytes(16);

function encrypt(text) {
 let cipher = crypto.createCipheriv(algorithm, Buffer.
from(key), iv);
 let encrypted = cipher.update(text, 'utf8', 'hex');
 encrypted += cipher.final('hex');
 return { iv: iv.toString('hex'), encryptedData: encrypted };
}

Note
Code snippet resources used in this chapter can be found in the GitHub repo for this
chapter (https://github.com/PacktPublishing/Multi-Cloud-Handbook-
for-Developers/tree/main/Chapter-5).

• Data access controls and confidentiality: Data access controls are the sentinels that guard
the gates to your data repositories. These controls are implemented through IAM policies,
which can be as granular as needed to restrict access to specific data fields. Role-based access
control (RBAC) can be used to assign permissions based on job functions, ensuring that users
have just enough access to perform their roles but not more. Attribute-based access control
(ABAC) can further refine these permissions based on other attributes such as location,
time, or the type of data being accessed. Confidentiality ensures that data is not disclosed to

https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-5
https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-5

Managing data and security in multi-cloud environments 101

unauthorized individuals, and it often goes hand in hand with encryption and access controls.
Techniques such as data masking can be employed to display only a portion of the data, thereby
maintaining confidentiality.

• Data integrity: Maintaining data integrity is about ensuring that once data is written, it remains
accurate and unaltered unless changed by authorized personnel. Cryptographic hash functions
such as SHA-256 can be used to verify data integrity.

• Data backup and recovery: Data protection is incomplete without a robust backup and
recovery strategy. In a multi-cloud environment, this involves not just regular backups but
also ensuring that these backups are secure and compliant with regulatory requirements.
Versioning can be used to keep track of changes and roll back to previous states if needed.
Recovery objectives should be clearly defined and tested regularly to ensure they meet business
continuity (BC) requirements.

• Monitoring and auditing: Continuous monitoring and auditing are essential for maintaining
a secure data environment. Logging all access and changes to data can provide a trail for audit
purposes and for investigating any security incidents. Tools such as security information and
event management (SIEM) systems can be integrated to provide real-time analysis of security
alerts generated by applications and infrastructure.

By implementing these best practices for data protection, developers equip themselves with a robust
toolkit that not only safeguards data but also ensures compliance with regulatory standards. This
comprehensive approach to data protection is akin to a traveler who prepares for all contingencies,
ensuring not just a successful journey but also a safe return.

Data privacy and compliance considerations

Navigating the multi-cloud environment is akin to traversing a labyrinth of laws, regulations, and
ethical considerations. Just as a responsible traveler respects the local customs and laws of the lands
they visit, cloud-native developers must adhere to a complex web of data privacy regulations and
compliance standards. We will now look into the intricacies of data privacy and compliance, providing
actionable insights for developers:

• Understanding data privacy regulations: The first step in ensuring data privacy and compliance
is understanding the regulations that apply to your data. Prominent regulations such as GDPR
in the European Union and CCPA in the United States have far-reaching implications. These
regulations dictate how personal data should be collected, processed, stored, and shared.
Non-compliance can result in hefty fines and reputational damage. Therefore, a thorough
understanding of these laws is essential for any cloud-native application that handles sensitive data.

• Strategies for compliance: Compliance is not a one-time task but an ongoing process. It
involves implementing strategies that align with data privacy requirements. Techniques such
as data anonymization, masking, and tokenization can be effectively applied to meet regulatory
requirements. For example, data anonymization can be used to remove all personally identifiable

Managing Security, Data, and Compliance on Multi-Cloud102

information (PII), where identification of data cannot occur without additional information
that is held separately.

• Compliance auditing and reporting: Regular audits are crucial for maintaining compliance.
These audits should be comprehensive, covering all aspects of data storage, access, and
processing. Automated auditing tools can help in continuously monitoring compliance metrics
and generating reports. These reports can be invaluable during internal reviews or in the case
of a regulatory audit.

• Data retention policies: Data should not be retained indefinitely. Regulations such as GDPR
require that data be kept only for as long as it serves the purpose for which it was collected.
Implementing automated data retention policies can help in the timely deletion of data, thereby
reducing the risk of non-compliance.

• Incident response plan (IRP) for data breaches: Despite best efforts, data breaches can occur.
Having an IRP is not just good practice but often a regulatory requirement. The plan should
outline the steps to be taken in the event of a breach, including notifying affected parties and
regulatory bodies as required by law.

• Vendor and third-party compliance: In a multi-cloud environment, data often traverses
networks and systems controlled by different vendors. Ensuring that these third parties are also
compliant with relevant regulations is crucial. Vendor compliance should be assessed regularly,
and any non-compliance should be addressed immediately.

By meticulously addressing these aspects of data privacy and compliance, cloud-native developers
can build applications that are not just secure but also ethically and legally sound. This is akin to a
traveler who respects both the written laws and the unwritten customs of the lands they visit, ensuring
a journey that is enriching and free from legal entanglements. In the next section, we will now explore
foundational elements of security in cloud-native multi-cloud environments.

Introduction to security in cloud-native multi-cloud
environments
Before digging deeper into the security of cloud-native applications in a multi-cloud environment,
let’s explore the classic approach of the 4Cs of cloud-native security. The 4Cs approach (as presented
in Figure 5.1) is a layered approach to ensuring the security of cloud-native applications:

Introduction to security in cloud-native multi-cloud environments 103

Figure 5.1 – 4Cs of cloud security

Each layer in this approach is dependent on the security of the layer outside it. For example, secure
code will be dependent on the security of the container where it’s deployed. Let’s have a closer look
at each one of the components of the 4Cs approach:

• Cloud: This is the infrastructure layer that hosts and executes your application. At this layer,
you should ensure data and configuration security and follow the best security practices
recommended by your cloud provider.

• Cluster: As we have explored in previous chapters, this layer will coincide with the Kubernetes
components that will hold the aforementioned containers. In this layer, security should focus
on securing communication between Kubernetes components by using certificates to authorize
incoming traffic and ensuring security and network standards are met.

• Container: This layer involves containerized applications. Security in this layer involves
scanning for container vulnerabilities, updating containers regularly, and creating users with
the fewest privileges.

• Code: This is the application and innermost layer. This layer focuses on secure coding
practices, including dynamic and static code analysis, and ensuring the same compliance for
third-party providers.

Security is a paramount concern when developing cloud-native applications across multiple cloud
providers. Organizations need to ensure that their applications are resilient to various security threats.
To achieve this, they can leverage industry benchmarks and best practices such as those provided by
the Center for Internet Security (CIS) and the Cloud Security Alliance (CSA).

Managing Security, Data, and Compliance on Multi-Cloud104

CIS benchmarks

CIS is a renowned organization that provides comprehensive security benchmarks, guidelines, and
best practices for various technology domains, including cloud-native applications. These benchmarks
offer a valuable resource for securing your applications in multi-cloud environments. Key aspects
covered by CIS benchmarks for cloud-native applications include the following:

• IAM: Implementing stringent access controls and ensuring proper user authentication

• Network security: Configuring network security groups (NSGs), firewalls, and security policies
to safeguard communication between cloud-native components

• Data protection: Encrypting data both at rest and in transit and managing encryption keys securely

• Logging and monitoring: Setting up robust logging and monitoring solutions to detect and
respond to security incidents promptly

• Container security: Ensuring container security by following best practices for securing Docker
containers and Kubernetes clusters

CSA framework

CSA is an organization dedicated to promoting cloud security best practices. Its Cloud Controls
Matrix (CCM) and Security, Trust, Assurance, and Risk (STAR) program provide valuable insights
into securing cloud-native applications in multi-cloud environments:

• CCM: CCM offers a framework for assessing cloud security risks across multiple cloud platforms.
It provides a set of security controls and guidelines for cloud-native applications.

• STAR program: The STAR program helps organizations assess the security posture of cloud
service providers (CSPs). It provides a framework for evaluating the security capabilities of
different cloud providers in a multi-cloud environment.

Implementing CIS and CSA benchmarks involves the following steps:

1. Assessment: Evaluate your cloud-native application against the security controls and best
practices outlined in CIS and CSA benchmarks.

2. Remediation: Address any identified security gaps or vulnerabilities by implementing
recommended controls.

3. Continuous monitoring: Set up continuous monitoring and auditing processes to ensure
ongoing compliance with benchmarks.

4. Security automation: Leverage automation tools to enforce security policies and controls
across multiple cloud providers consistently.

DevSecOps best practices for cloud-native apps in multi-cloud environments 105

By adhering to CIS and CSA benchmarks, organizations can bolster the security of their cloud-native
applications in multi-cloud environments, mitigating risks and ensuring robust protection against
threats. The next section will cover DevSecOps and its best practices.

DevSecOps best practices for cloud-native apps in multi-
cloud environments
Since we have discussed data and security, we now encounter a critical juncture where DevOps and
security intersect. This section serves as a comprehensive guide for embedding security into the
DevOps life cycle, following the principles of DevSecOps.

Integrating security into the DevOps workflow

At the very heart of the DevSecOps fortress lies the core understanding of its significance—an agile and
seamless integration of security practices into the very fabric of the DevOps workflow. In multi-cloud
environments, where agility, speed, and security converge to create a formidable alliance, DevSecOps
stands as a guardian, ensuring that cloud-native apps flourish under an umbrella of protection. Key
aspects of DevSecOps principles are the following:

• The imperative of DevSecOps: In any well-coordinated expedition, each team member must
be well equipped and informed. The same holds true for cloud-native app development in a
multi-cloud setting. DevSecOps is not an optional add-on but a necessity. It ensures the safety
and reliability of cloud-native applications by embedding security checks and controls directly
into the DevOps pipeline. This ensures a multi-layered security approach where security becomes
a concern of all departments of an organization. For proper implementation of this principle,
organizations should consider dedicated security training to ensure a seamless cultural shift.

Figure 5.2 represents security as the responsibility of each stakeholder:

Figure 5.2 – DevSecOps

Managing Security, Data, and Compliance on Multi-Cloud106

Beyond tools and processes, DevSecOps is fundamentally a cultural shift. It propagates the idea
that every stakeholder, from developers to operations specialists, is responsible for security. It’s
a mindset where security is an omnipresent concern, not just a checkpoint.

• Security throughout the software development life cycle (SDLC): Security is not a phase but
a continuous requirement that must be integrated throughout the SDLC. Starting from the
design phase, threat modeling can identify potential security risks. During the coding phase,
static and dynamic code analysis tools such as Checkmarx or Fortify can be used to scan the
code for vulnerabilities.

• Automated security testing: The CI/CD pipeline should include automated security tests to
ensure that security checks are performed at every stage of development. Tools such as OWASP
ZAP for dynamic analysis or SonarQube for static code analysis can be integrated into the
pipeline. These tools automatically scan the code base and dependencies for vulnerabilities,
providing immediate feedback to developers.

Automation and configuration management for secure
deployments

In this topic, we will understand the art of automation, leveraging infrastructure-as-code (IaC) and
configuration management tools to fortify our cloud-native bastions:

• IaC: IaC is a cornerstone for the multi-cloud deployments. Utilizing tools such as Terraform
or Ansible, developers can codify their infrastructure, ensuring that it is consistent, repeatable,
and secure across diverse cloud platforms. This code-based approach to infrastructure allows
for version control, making it easier to roll back changes and track security configurations.

• Automating security controls: Automation is a key enabler of security in a DevSecOps
environment. Tools such as Chef or Puppet can be employed to automate the enforcement
of security configurations, patch management, and compliance checks. These tools can be
integrated into the CI/CD pipeline to ensure that every code release is automatically vetted
for security compliance. This ensures that the application environment remains secure and
compliant, not just in one cloud but across multiple cloud platforms.

• Secure runtime environments: Runtime security is a critical aspect that often gets overlooked.
Containers, for instance, should be run with the least privilege to minimize the attack surface.
Network policies can be configured to restrict unauthorized access to services and data. Moreover,
runtime security monitoring tools can be enabled to provide real-time alerts on suspicious
activities. These layers of protection are essential for detecting and preventing malicious activity
during the application’s operation.

DevSecOps best practices for cloud-native apps in multi-cloud environments 107

By adopting these automation and configuration management practices, developers can significantly
enhance the security posture of their cloud-native applications across multiple cloud environments.
This not only minimizes the risk of security incidents but also simplifies the task of maintaining
compliance with various regulatory standards.

Ensuring secure development practices

As we navigate the depths of the DevSecOps fortress, let’s understand the essence of secure development
practices—a treasury of knowledge to safeguard the core of cloud-native applications. Let’s uncover
some key aspects of it:

• Secure coding practices: In the realm of secure cloud-native development, secure coding
practices are non-negotiable. These practices aim to identify and mitigate common vulnerabilities
such as the following:

 � SQL injection: SQL injection is a type of cyberattack that occurs when an attacker injects
malicious Structured Query Language (SQL) code into an input field or query in a web
application. The goal of an SQL injection attack is to manipulate the application’s database
by injecting rogue SQL statements, often with malicious intent. SQL injection attacks are
possible when an application doesn’t properly validate or sanitize user inputs before using
them in SQL queries.

 � Cross-site scripting (XSS): XSS is a type of security vulnerability commonly found in web
applications. It occurs when an attacker is able to inject malicious scripts (usually written in
JavaScript) into web pages viewed by other users. These scripts can then run in the context
of the victim’s browser, potentially stealing sensitive information, such as cookies, session
tokens, or other personal data. XSS attacks are particularly dangerous because they allow
attackers to impersonate legitimate users and carry out malicious actions on their behalf.

 � Buffer overflows: A buffer overflow, also known as a buffer overrun, is a type of software
vulnerability that occurs when a program writes more data into a buffer (a temporary
storage area) than it can hold. This extra data can overflow into adjacent memory locations,
potentially overwriting other data or even code. Buffer overflows are a common source of
software security vulnerabilities and can lead to serious consequences, including crashes,
data corruption, and security breaches.

Utilizing static application security testing (SAST) tools such as Fortify or Checkmarx,
developers can scan the code base for vulnerabilities during the development phase. These
tools provide actionable insights and remediation advice, allowing developers to address issues
before they escalate into more significant security risks.

• Secure software supply chain: The software supply chain is often an overlooked attack vector.
Ensuring the security of the software supply chain involves multiple steps, from verifying the
integrity of third-party components and libraries to continuously monitoring for vulnerabilities.
Tools such as Snyk or WhiteSource can be integrated into the development pipeline to scan

Managing Security, Data, and Compliance on Multi-Cloud108

dependencies for known vulnerabilities. Additionally, digital signatures and checksums can be
used to verify the integrity of these components, ensuring that they haven’t been tampered with.

• Secure containerization and image scanning: Containerization has revolutionized the way
applications are deployed and managed, but it also introduces its own set of security challenges.
Container security is multi-faceted, involving everything from securing the container runtime
to scanning container images for vulnerabilities. Tools such as Clair or Trivy can be used to
scan container images as part of the CI/CD pipeline. For runtime security, solutions such as
Aqua Trivy or Sysdig can be employed to monitor container behavior, enforce security policies,
and provide real-time alerts on any security anomalies.

Now that we have a solid understanding of DevSecOps and how to integrate security seamlessly
at each stage of the SDLC, let’s shift our focus and delve into the importance of compliance across
multiple cloud environments.

Managing compliance across multiple clouds
environments
Remember—as cloud-native developers, we must uphold the highest standards of regulatory adherence
and industry-specific compliance, ensuring that our applications flourish within the bounds of legal
and ethical constraints. Developers should ensure that cloud-native applications adhere to and comply
with consumer, industry, legal, and internal standards. Non-compliance might result in serious legal
and financial consequences.

The following diagram proposes a continuous compliance cycle to ensure adherence to the corresponding
standards and regulations:

Figure 5.3 – Stages of the compliance cycle

Managing compliance across multiple clouds environments 109

This approach suggests four phases in the compliance cycle:

• Identify: Organizations should choose compliance frameworks that align with their industry
and regulatory requirements. This framework should serve the organization to identify
compliant security practices. Examples of frameworks include the International Organization
for Standardization (ISO) 27001 and the National Institute of Standards and Technology
(NIST) Cybersecurity Framework.

• Detect: Most cloud providers have built-in tools that ensure continuous compliance with
security regulations. This becomes more important in cloud-native and DevOps cycles. Detecting
security compliance should be a fast and preferably automated task to integrate compliance
detection in the CI/CD cycle.

• Remediate: Detected compliance violations are also addressed with the help of compliance
management platforms. These platforms usually sort violations by severity and propose
recommended actions.

• Continuous: Compliance evaluation should not happen in an isolated and sporadic fashion
but in a cyclic and continuous manner, integrated into other continuous practices.

Understanding the compliance landscape in multi-cloud
environments

When it comes to compliance, it’s not just about understanding the laws but also about knowing
how to apply them in a variety of contexts. This section aims to provide a comprehensive guide to
managing compliance across multiple clouds, focusing on industry-specific regulations, challenges,
and cloud provider-specific offerings.

Overview of industry-specific regulations

It is also true that compliance is not a one-size-fits-all proposition. Different industries have their
own sets of regulations that dictate how data should be handled, stored, and processed. For instance,
healthcare organizations must comply with HIPAA, which has stringent requirements for the
protection of patient data. Similarly, companies involved in payment processing must adhere to PCI
DSS. For organizations operating within the European Union, GDPR sets rules for data protection
and privacy. Understanding these regulations is not just a legal necessity but also a cornerstone for
building compliant cloud-native applications.

Challenges and considerations

Compliance in a multi-cloud environment is a complex endeavor, fraught with challenges that range
from data sovereignty to varying security standards among different cloud providers. Data sovereignty
issues arise when data is stored or processed in a different jurisdiction than where it originated,
potentially subjecting it to different laws and regulations. Additionally, each cloud provider may have
its own set of security controls, which can complicate the task of maintaining a uniform compliance

Managing Security, Data, and Compliance on Multi-Cloud110

posture across multiple clouds. Therefore, a deep understanding of these challenges is crucial for
devising effective compliance strategies that are both robust and flexible.

Cloud provider-specific compliance offerings

Each cloud provider offers a suite of tools and services specifically designed to assist with compliance.
For example, Amazon Web Services (AWS) provides services such as AWS Config, which allows for
real-time assessment of resource configurations, and AWS CloudTrail, which enables governance,
compliance, and risk auditing. Azure, on the other hand, offers Azure Policy for enforcing organization-
specific requirements and Azure Blueprints for orchestrating cloud resources with compliance and
regulatory requirements in mind. Leveraging these tools effectively can significantly streamline
compliance efforts, reducing the complexity and overhead associated with managing compliance in
multi-cloud environments.

Implementing governance frameworks and controls

Establishing robust governance frameworks becomes imperative for maintaining a secure and
compliant ecosystem.

Establishing governance frameworks

In multi-cloud compliance, governance frameworks serve as the compass and map, guiding organizations
through an intricate maze of regulations and standards. Frameworks such as the NIST Cybersecurity
Framework or ISO 27001 offer a structured approach, providing a set of guidelines that help organizations
define policies, procedures, and controls that are in alignment with regulatory requirements. Adopting
such frameworks is akin to following a well-marked trail on a hiking expedition; they provide the
direction and markers that help you stay on the right path, ensuring that your cloud-native applications
meet or exceed compliance standards.

Defining policies, procedures, and controls

If governance frameworks are the compass and map, then policies, procedures, and controls are the
gear and supplies you carry on your compliance journey. Policies act as a rulebook, defining what
needs to be done to achieve compliance. Procedures are the step-by-step guides, detailing how to
implement these policies. Controls are the enforcement mechanisms, ensuring that policies and
procedures are followed to the letter. In a multi-cloud environment, tools such as HashiCorp Sentinel
or Open Policy Agent (OPA) can be invaluable. These tools allow you to define, enforce, and monitor
policies, procedures, and controls, ensuring that your applications remain compliant across diverse
cloud platforms.

Managing compliance across multiple clouds environments 111

Auditing and monitoring compliance posture

Continuous auditing and monitoring are the watchtowers and checkpoints on your compliance journey.
They provide the visibility needed to assess the effectiveness of your compliance strategies in real
time. Tools such as Splunk or Sumo Logic can aggregate logs from multiple cloud providers, offering
a unified view of your compliance posture. These tools enable real-time monitoring and auditing,
allowing you to set up automated alerts for any deviations from compliance norms. This proactive
approach enables quick remediation, ensuring that your cloud-native applications remain compliant
amid the ever-changing landscape of industry regulations and standards.

Figure 5.4 represents the high-level steps involved in auditing and monitoring compliance, start by
identifying specific regulatory requirements applicable to your organization, which may include
industry-specific standards such as HIPAA or GDPR.

The next step is to create comprehensive compliance policies and procedures based on these regulations,
outlining rules and controls to enforce within your multi-cloud setup. You should also select appropriate
compliance monitoring tools, whether built-in options from cloud providers or third-party solutions,
to scan your cloud infrastructure for violations. It is important to configure monitoring rules within
these tools to align with your compliance policies, covering aspects such as data encryption and
access controls. Implement continuous monitoring through real-time or periodic scans to swiftly
detect non-compliance issues.

Setting up automated alerts is essential for detecting violations to ensure prompt action by responsible
teams. Following this, develop procedures for remediating compliance breaches, such as applying
necessary configurations or security patches. You should also maintain detailed documentation of
monitoring activities, including scans, alerts, remediation efforts, and compliance reports. Conduct
regular compliance audits, both internal and external, to meet regulatory requirements.

It is essential that you generate compliance reports summarizing your posture for sharing with auditors
and stakeholders, and periodically review and enhance your compliance monitoring processes and tools
for improved efficiency. You should also ensure that teams are well trained in compliance procedures
and stay informed about regulatory changes, updating policies and rules accordingly. Consider also
third-party audits for an independent assessment of compliance, and collaborate with legal and risk
management teams to align compliance efforts with legal obligations and risk mitigation strategies:

Managing Security, Data, and Compliance on Multi-Cloud112

 Figure 5.4 – High-level steps in auditing and monitoring compliance

In this section, we looked into the power of governance, policies, and audits—a triumvirate that
stands resolute in safeguarding compliance across the expansive realms of multi-cloud environments.
Through understanding the compliance landscape and implementing robust frameworks, you will
emerge as a stalwart guardian of ethical practices and regulatory adherence, allowing your cloud-
native applications to flourish under the virtuous light of compliance.

IAM across multiple clouds environments
IAM in the cloud is a security framework that can’t be understated, especially in a multi-cloud
environment. IAM is designed to authenticate and regulate user access, granting or denying access
privileges. An effective cloud-based IAM solution allows organizations to implant such frameworks
across different cloud environments.

IAM provides a powerful toolset ready to implement robust security practices in a multi-cloud
environment. Let’s make a quick introduction to some common capabilities of IAM frameworks:

• Authentication: IAM frameworks put different authentication strategies at our disposal.
Authentication refers to the ability to verify that a user trying to log in to our system is legit

IAM across multiple clouds environments 113

and has not impersonated the actual user by guessing or accessing credentials that might have
been compromised. IAM authentication aggregates additional authentication procedures,
including multi-factor authentication (MFA), an extension of two-factor authentication
(2FA). These strategies ensure additional layers of verification that can take multiple forms:
fingerprint verification, an image scan, or a physical device that generates a one-time security
token. Authentication solutions can authorize, deny, or challenge the user to provide additional
authentication requirements:

Figure 5.5 – MFA

• Single sign-on (SSO): Usually works in collaboration with MFA capabilities and ensures that
users have access to multiple services once authentication is verified.

• Access management: IAM frameworks offer the capability to restrict access to the fewest
resources for a user. As we have discovered in previous sections, access can be restricted by
the user’s role or by defined attributes, such as time or location.

As we continue our journey through the multi-cloud landscape, we encounter the critical crossroads
of IAM. Much like travelers who must secure their belongings and authenticate their identities at
various checkpoints, cloud-native developers face the intricate task of managing user identities and
access controls across a multitude of cloud platforms. This section serves as your guide through this
complex terrain.

Centralized IAM

Typically, users traverse vast expanses of cloud platforms, each with its unique set of user identities
and access controls. As we venture forth, we seek to unify this diversity and bring harmony to user
identity management (IM). Let’s dive deeper and explore IAM capabilities in more detail:

• Managing user identities across diverse cloud platforms: In the world of multi-cloud computing,
centralized IM is the passport that allows seamless travel across different cloud territories.
Technologies such as SSO and identity federation protocols such as Security Assertion Markup
Language (SAML) or Open Authorization 2 (OAuth2) act as a universal visa, enabling users to
authenticate once and gain access to resources across various cloud platforms. This centralized
approach is akin to a global entry system for travelers, streamlining the authentication process
and enhancing the user experience.

Managing Security, Data, and Compliance on Multi-Cloud114

• Implementing centralized authentication and authorization: Centralized authentication and
authorization are the customs and immigration desks of our multi-cloud journey. Protocols such
as OAuth2 or OpenID Connect (OIDC) serve as the master key, providing a single source of
truth (SSOT) for user identities and permissions. These mechanisms streamline the process of
verifying who you are (authentication) and what you are allowed to do (authorization) across
different cloud environments. This unified approach simplifies management and enhances
security, ensuring that users are who they say they are and have access only to the resources
they are permitted to use.

• RBAC and privilege management: RBAC and privilege management are the travel advisories
and restricted area signs in our multi-cloud expedition. They allow fine-grained control over
who gets to do what within your cloud-native applications. RBAC enables you to define roles and
permissions at a granular level, ensuring that users have only the access they need to perform
their tasks. Tools such as AWS IAM, Azure Active Directory (Azure AD), and Google Cloud
Identity act as local guides, helping you implement these controls effectively across multiple
cloud platforms.

MFA and secure access

As we delve deeper into the multi-cloud environment, we encounter the need for enhanced security
measures, multiple locks and safeguards, one would use to secure valuable possessions during a
journey. This section focuses on additional layers of security that can be implemented to fortify your
cloud-native applications.

Introduction to MFA in multi-cloud environments

Consider MFA as an advanced lock system safeguarding the treasure chest of your multi-cloud
environment. In a landscape where data breaches and unauthorized access are increasingly common,
MFA serves as a critical line of defense. It enhances the basic authentication process by requiring
two or more independent forms of verification, thereby significantly reducing the likelihood of
unauthorized access.

The three pillars of MFA

MFA relies on a combination of the following three types of credentials:

• Something you know: This is usually a password or a PIN. It’s essential to enforce strong
password policies, such as a minimum length and the inclusion of special characters, to ensure
this layer is as secure as possible.

• Something you have: This could be a physical device such as a security token, a smart card, or
a smartphone that can generate or receive a time-based one-time password (TOTP). Google
Authenticator and Authy are popular apps that generate TOTPs.

IAM across multiple clouds environments 115

• Something you are: This includes biometric data such as fingerprints, facial recognition, or
retina scans. Biometric data offers a high level of security but requires specialized hardware
and is generally used in more sensitive applications.

 Figure 5.6 presents the three aforementioned types of credentials:

Figure 5.6 – MFA

Implementing MFA in cloud-native applications

Let us now explore some of the explore key aspects of implementing MFA, including identifying
integration points, selecting the right technology, optimizing user experience, and ensuring compliance
with industry regulations:

• Integration points: Identify critical points in your application where MFA should be implemented.
This usually includes login pages, but you might also consider adding MFA for accessing
sensitive features within the application.

• Technology selection: Choose an MFA solution that aligns with your needs. Google Authenticator
and Authy are popular choices because they offer APIs and SDKs that are relatively easy to
integrate into various types of applications and are supported across multiple cloud platforms.

• User experience: Implementing MFA should not come at the cost of user experience. Offer
options such as Remember this device to minimize repeated MFA prompts and provide fallback
mechanisms such as security questions or backup codes.

• Compliance requirements: Ensure that your MFA implementation complies with relevant
regulations. For example, financial and healthcare industries often have specific guidelines
around authentication.

Monitoring and auditing

We will now look into some of the essential practices for ongoing MFA security. This includes logging
authentication activities, setting up alerts for suspicious events, and conducting regular security audits
to ensure that your MFA configurations remain robust and resilient:

• Logging: Keep detailed logs of authentication attempts and regularly review them. This can
help identify any suspicious activities early on.

• Alerts: Set up automated alerts for multiple failed authentication attempts from the same IP
address or for any changes in authentication settings.

Managing Security, Data, and Compliance on Multi-Cloud116

• Regular audits: Conduct regular security audits to ensure that the MFA settings are configured
correctly and that there are no vulnerabilities.

In a nutshell, MFA is not just an optional add-on but a necessity in today’s multi-cloud environments.
By requiring multiple forms of verification, MFA significantly enhances the security posture of your
cloud-native applications. Solutions such as Google Authenticator and Authy make it easier than ever
to integrate robust MFA functionalities, providing an additional layer of security that is both effective
and user-friendly.

Implementing secure access controls and session management

Secure access controls and session management are the surveillance cameras and alarm systems of
our cloud-native security architecture. Techniques such as session timeout, session rotation, and IP
whitelisting act as additional layers of security, ensuring that user interactions with applications are
both secure and efficient. Cloud services such as Amazon Cognito or Azure AD B2C serve as security
control centers, offering robust features for managing sessions and access controls across multiple clouds.

Managing access keys and credentials

Access keys and credentials are the master keys to your kingdom and managing them securely is
paramount. Best practices include regularly rotating these keys, employing PoLP access, and using
secrets management services such as AWS Secrets Manager or Azure Key Vault. These practices are
akin to having a secure, tamper-proof safe for your most valuable items. By adhering to these best
practices, you mitigate the risk of unauthorized access and ensure that your cloud-native applications
remain secure across various cloud platforms.

Now that we have comprehensively explored MFA, delving into its significance, foundational pillars,
and the practical steps to implement it within cloud-native applications, our journey continues into
the next section, where we will shift our focus toward understanding data privacy and strategies for
its safeguarding.

Data privacy and protection
As we continue our journey through the multi-cloud landscape, we arrive at a critical juncture of
data privacy and protection, similar to the safeguarding of personal documents and valuables during
international travel. This section aims to guide you through the labyrinthine regulations and technical
complexities of ensuring data privacy and protection across multiple cloud platforms.

Understanding data privacy requirements

Navigating the multi-cloud environment without a deep understanding of data privacy regulations
would be like traveling to foreign countries without knowing their laws. This section serves as your legal
guidebook, helping you understand the intricacies of data privacy regulations and their implications
for cloud-native applications.

Data privacy and protection 117

Overview of data privacy regulations and their implications

Understanding data privacy regulations such as GDPR in the European Union or CCPA in the United
States is not just a legal necessity but a cornerstone for building trust. These regulations set the legal
framework for how data should be handled, stored, and protected. Non-compliance doesn’t just risk
financial penalties but can also erode customer trust, making it imperative for cloud-native developers
to be well versed in these laws.

Identifying sensitive data and its protection requirements

Much like a traveler would separate their cash, passport, and other valuables for special attention,
cloud-native applications must identify and specially handle sensitive data. This includes PII, financial
records, and healthcare information. The protection requirements for these types of data are stringent
and often involve multiple layers of encryption—both at rest and in transit—as well as strict access
controls implemented through IAM solutions.

Data classification and handling of PII

Data classification is the process of sorting your valuables into different safes, each with its own set
of locks and keys. In cloud-native applications, this involves categorizing data based on its sensitivity
level. PII, for instance, requires the highest level of security measures. This not only includes robust
encryption techniques but also strict access controls that are regularly audited and updated. Tools such
as Amazon Macie or Varonis can automate the classification of PII and other sensitive data, ensuring
that they are handled with the utmost care.

Implementing data privacy controls

Let’s have a section that can serve as a guide to implementing data privacy controls that not only meet
regulatory requirements but also go the extra mile in safeguarding sensitive data.

Data anonymization, masking, and pseudonymization techniques

Imagine you have a treasure map, but you don’t want to reveal the exact location of the treasure to
anyone who looks at it. Data anonymization, masking, and pseudonymization are akin to encoding
that map. Let’s take a closer look at these:

• Data anonymization: This process involves removing or altering PII or other sensitive data
in a dataset to make it anonymous. Anonymized data cannot be traced back to individuals.
Anonymization methods may include techniques such as randomization, aggregation,
or generalization.

Managing Security, Data, and Compliance on Multi-Cloud118

In the following example, the anonymizeData function takes an array of data objects
and anonymizes sensitive information (such as names and emails). It’s a basic representation
of data privacy controls where personal identifiers are replaced to protect individual privacy:

function anonymizeData(data) {
 return data.map(item => {
 return {
 ...item,
 name: 'Anonymous',
 email: 'anonymized@example.com',
 };
 });
 }

 // Example usage:
 const originalData = [
 { name: " packt user1", email: " packt_user1@example.com",
age: 30 },
 { name: " packt user2", email: " packt_user2@example.com",
phone: "1234567890" },
];

 const anonymizedData = anonymizeData(originalData);
 console.log("Original Data:", originalData);
 console.log("Anonymized Data:", anonymizedData);

• Data masking: Data masking, also known as data obfuscation or data redaction, involves
concealing specific data elements in a dataset. This is often done by replacing sensitive data with
fictional or scrambled values. The goal is to protect sensitive information while maintaining
the structure and usability of the data for testing, development, or analytics.

The following example demonstrates data masking by taking an email address and replacing
the characters before the domain with asterisks, preserving the first character and domain
for recognizability:

function maskEmail(email) {
 const maskedEmail = email.replace(/^(.)(.*)(.@.*)$/,
 (_, firstChar, middleChars, lastPart) =>
 firstChar + middleChars.replace(/./g, '*') + lastPart
);
 return maskedEmail;
 }

 // Example usage:
 const email = 'packt_user1@example.com';
 const masked = maskEmail(email);

Data privacy and protection 119

 console.log("Original Email:", email);
 console.log("Masked Email:", masked);

• Pseudonymization: Pseudonymization is a privacy-enhancing technique that involves replacing
sensitive data with pseudonyms or tokens. Unlike anonymization, pseudonymized data can be
reversed or re-identified using a separate mechanism, such as a lookup table. Pseudonymization
allows for a level of data protection while still enabling specific use cases.

In the following example, it takes a user ID and converts it into a hashed string using SHA-256,
creating a pseudonym that can be used to reference the user without exposing the actual ID:

const crypto = require('crypto');

function pseudonymize(input) {
 const pseudonym = crypto.createHash('sha256').update(input).
digest('hex');
 return pseudonym;
}

// Example usage:
const userId = 'packt123';
const pseudonym = pseudonymize(userId);
console.log("Original ID:", userId);
console.log("Pseudonym:", pseudonym);

These techniques transform sensitive data into a format that is unintelligible to unauthorized users
but can be reverted to its original state for authorized use. For example, data masking could replace
a Social Security number (SSN) in a database with Xs, while pseudonymization could replace it
with a random identifier. Tools such as Google’s Cloud Data Loss Prevention or Microsoft’s Azure
Information Protection (AIP) can assist in implementing these techniques effectively.

Data loss prevention strategies and monitoring

Just as travelers use locks and tracking devices to prevent the loss of their valuables, data loss
prevention (DLP) tools act as guardians of your data. These tools monitor and control data transfers
within your cloud-native applications, identifying potential breaches or leaks. They can automatically
block or quarantine suspicious activities, ensuring that sensitive data remains secure. Solutions such
as Symantec DLP or McAfee Total Protection for DLP offer robust features for monitoring data in
transit, at rest, or in use.

Consent management and privacy policy enforcement

In a world where data is the new currency, consent is the legal tender. Consent management platforms
(CMPs) serve as gatekeepers for data collection and processing. They ensure that users are fully
informed about how their data will be used and stored, providing them with the option to opt in or

Managing Security, Data, and Compliance on Multi-Cloud120

opt out. This is similar to customs declarations when entering a new country; you must declare what
you are bringing in and for what purpose. Tools such as OneTrust or TrustArc can help manage user
consent effectively, ensuring compliance with regulations such as GDPR and CCPA.

By implementing these data privacy controls, you are not just ticking off compliance checklists but are
also building a fortress of trust around your cloud-native applications. This is crucial for navigating
the complex terrain of data privacy and protection in a multi-cloud environment, ensuring that your
journey is both secure and in compliance with global data protection regulations.

Summary
As we wrap up our journey through the multi-cloud landscape of data, security, and compliance, let’s
reflect on the wisdom and skills we’ve acquired. We’ve unlocked valuable insights to bolster cloud-
native applications. In our pursuit of data security across diverse cloud platforms, we’ve fortified our
defenses, mastering techniques such as encryption and access controls. Data integrity and confidentiality
are our cornerstones. Navigating data privacy and compliance, we’ve embraced regulations such as
GDPR and CCPA.

Now, we should be aware of the rules across various clouds and geographies, create robust plans, and
keep a vigilant eye on things to ensure everything is in line. Data, security, and compliance are the
bedrock of cloud-native applications. They safeguard users and trust in the multi-cloud world.

In our next chapter, we will explore strategies to manage cloud expenses effectively while maintaining
performance and scalability. Stay tuned for insights into cost optimization in our dynamic cloud journey.

6
Maximizing Value and

Minimizing Cost in Multi-Cloud

As a cloud-native developer, working with multiple cloud services can feel like navigating from one
island to another, with each island representing a different cloud service that offers unique technological
features to explore and weigh against each other. However, the costs associated with such services can
be difficult to predict, making it crucial to keep a watchful eye on expenses throughout this journey.
Therefore, it is crucial to navigate the unpredictable waters of multi-cloud environments with the support
of platform and cloud engineers, who are responsible for the underlying platform and infrastructure.
By finding innovative ways to keep costs low without compromising quality, you can take advantage of
the exciting possibilities offered by multi-cloud environments while avoiding unnecessary expenses.

In this chapter, we’ll explore the fundamental concepts and explore tips and strategies to make sure you
use your resources wisely without spending more than you need to. We’ll cover different aspects of cost
optimization, from the impact of cost optimization on the very fabric of cloud-native app development
to the art of right-sizing resources that align with functionality and performance requirements. We’ll
also cover how to detect and mitigate wasteful spending and how to choose the right cloud provider.

Throughout this journey, we hope to equip you with the necessary knowledge to sail through this journey
of cost optimization, where each page brings you closer to the treasure of efficient, cost-effective, and
strategic cloud-native application development. The following topics will be covered in this chapter:

• The shift-left cost for development in multi-cloud

• FinOps practices for cloud-native apps in multi-cloud

• Implementing shift-left cost management and FinOps practices

• Optimizing cloud resources and minimizing waste

• Selecting the right cloud provider based on cost and performance

• Data management cost strategies

• Governance and cost control

Maximizing Value and Minimizing Cost in Multi-Cloud122

The shift-left cost for development in multi-cloud
When deploying workloads across a multi-cloud environment, cost optimization becomes a key
factor. Just like designing a bridge, careful planning is required to ensure stability, functionality, and
cost-efficiency without compromising safety. That’s why shift-left cost optimization is crucial in the
early stages of the development life cycle. It involves proactively considering cost-saving measures
and strategies at the beginning of the development process rather than addressing cost concerns as
an afterthought.

Shift-left cost optimization helps identify and mitigate potential cost overruns early in the development
process. It ensures that cost considerations are integrated into the core of your cloud-native application’s
design and development from the outset. This approach reframes the development journey by
acknowledging that every architectural choice made in the early stages can influence the project’s
financial landscape down the road. Here are some significances of opting for shift-left in development:

• The significance of cost optimization in the development life cycle: Cost control is paramount
in today’s dynamic technology landscape, where cloud services are consumed like utilities. By
understanding the impact of cost during the design phase, developers can shape their cloud-
native apps to be efficient not just in terms of performance but also financial resources. This
approach ensures that solutions are both functional and fiscally responsible.

• Cost analysis and predictions during development: Developers can leverage cloud cost
management tools to analyze and predict potential expenses. This analytical insight helps them
make choices that align with their budget and performance goals.

• Leveraging cost-focused development practices: Efficient coding and resource utilization
are key ingredients in the recipe for cost-conscious development. From optimizing code for
performance to carefully provisioning cloud resources, every action can impact the bottom
line. Developers, architects, and operations teams must collaborate to ensure that each line of
code and every cloud instance serve a purpose without excess.

Regular cost-focused feedback helps developers adapt and optimize their coding practices, resulting
in an application that is both finely tuned and financially prudent.

In the following section, we’ll delve into financial operations (FinOps) practices, shedding light on
how cloud-native developers can align their technical prowess with financial acumen to create efficient
and cost-effective applications.

FinOps practices for cloud-native apps in multi-cloud
FinOps is a framework that’s designed to manage operational expenditures related to cloud infrastructure
and computing. The goal of FinOps is to promote collaboration among engineering, finance, business,
and technology teams within the organization, ensuring they achieve business value and financial
responsibility for cloud services.

FinOps practices for cloud-native apps in multi-cloud 123

FinOps revolves around cross-functional teamwork, cost visibility, performance monitoring, and
benchmarking, with an emphasis on resource optimization. It’s a discipline that aims to understand
spending, optimize spending, and consistently evaluate cloud service performance that aligns with
business objectives.

The FinOps cycle consists of three stages – inform, optimize, and operate:

• Inform: During the inform stage, organizations design cost allocation and management,
establish visibility and monitoring of cloud resources, and lay the foundation for accurate
benchmarking, forecasting, budgeting, and other business indicators.

• Optimize: The optimize stage addresses cost and resource utilization to reduce costs and
minimize resource waste. Strategies to avoid overprovisioning or underutilized cloud resources
can result in significant cost savings.

• Operate: The last phase of the cycle, operate, emphasizes collaboration among departments to
make informed decisions about the performance, quality, and costs of cloud operations. This
phase enables continuous validation and optimization of cloud usage and ensures adherence
to the organization’s business goals.

FinOps is a practice that aims to strike a balance between maximizing the value of cloud investments
and controlling spending. It combines the expertise of finance, operations, and development teams
to deliver cloud-native applications that excel in performance and thrive within budget constraints.

To learn more about FinOps, we suggest referring to the FinOps Foundation (https://www.
finops.org/). Now, let’s understand what the FinOps team operating model looks like, and the
different roles involved in managing a company’s cloud infrastructure:

Figure 6.1 – FinOps team structure

https://www.finops.org/
https://www.finops.org/

Maximizing Value and Minimizing Cost in Multi-Cloud124

Let’s understand each role in detail:

• Engineering/platform engineering: These are the technical stakeholders responsible for
designing, implementing, and managing cloud solutions. They work closely with the FinOps
team to understand the cost implications of engineering decisions and optimize resource usage
and efficiency.

• Business/product owner: These individuals focus on the product and business outcomes; this
is where software developers could reside to design and develop the product. They collaborate
with the FinOps team to ensure that the cloud spend is aligned with business objectives and
delivers value.

• Exec: Executive stakeholders are responsible for the overall vision and direction of the
organization’s cloud strategy. They rely on the FinOps team for visibility into cloud spend and
ensure that costs are managed in line with strategic goals.

• Finance: The finance department plays a critical role in budgeting, forecasting, and the financial
governance of cloud spend. They work with the FinOps team to track cloud costs, allocate them
accurately, and optimize financial operations related to the cloud.

• FinOps team: This is the central team that bridges the gap between all stakeholders. The FinOps
team is responsible for managing cloud costs, ensuring that spending is transparent and that
optimization strategies are in place. They work to balance and align the technical and financial
aspects of cloud operations.

• Infrastructure changes: This indicates that the FinOps team is integral to managing and
adapting to changes in cloud infrastructure, ensuring that cost efficiency and optimization are
considered when changes are made.

• Rate negotiations: A specific function of the FinOps team where they negotiate with cloud
providers to secure the best rates for services, which is essential for cost optimization.

• Cloud provider: The cloud provider is the entity that supplies cloud services to the organization.
The FinOps team interacts with the cloud provider for various purposes, including cost
management, service optimization, and negotiating rates.

Note
The placement of software developers within an organization depends on the specific structure
and needs of that organization.

Now that we’ve covered the fundamentals of FinOps, let’s see how we can practically apply these.

Implementing shift-left cost management and FinOps practices 125

Implementing shift-left cost management and FinOps
practices
As a developer, conquering technical challenges is only half the battle. Today’s developers must wear
multiple hats, embracing not just coding prowess but also financial responsibility. This topic explores
two powerful philosophies – shift-left cost management and FinOps – empowering developers to
become budget heroes who build applications that are both innovative and cost-effective.

Shifting costs left – prevention is key

Imagine catching a critical bug early in development, saving hours of frustration and costly fixes.
Shift-left cost management applies this same principle to finances. Instead of waiting for hefty bills
at the end of the project, it integrates cost awareness and optimization seamlessly into the development
life cycle. It’s not about policing developers; it’s about empowering them with knowledge and tools to
make informed decisions from the get-go.

So, how can you become a shift-left cost champion?

Let’s find out:

• Embed costs into code: Tools such as Terraform and CloudFormation allow you to predict
resource usage and costs directly within your code, giving you real-time feedback on infrastructure
choices. Consider the impact of different instance types, storage options, and service configurations
before they translate into hefty bills.

• Code like a cost ninja: Embrace serverless functions for event-driven tasks, leverage autoscaling
to right-size resources based on demand and explore containerization options such as Docker and
Kubernetes for efficient resource utilization. Remember, every line of code has a cost implication.

• Become a monitoring maestro: Don’t be blindsided by unexpected expenses. Utilize cloud
provider tools such as AWS Cost Explorer or Azure Cost Management to continuously monitor
resource usage, identify cost anomalies, and set up alerts that notify you of potential overruns
before they become major issues.

FinOps – collaboration is the secret sauce

FinOps goes beyond mere cost control; it’s about fostering a collaborative culture where developers,
finance, and operations teams work together toward a shared goal – building cost-effective and sustainable
applications. It’s about breaking down silos, sharing knowledge, and creating an environment where
everyone feels responsible for optimizing cloud spend.

So, how can you be a FinOps champion?

Maximizing Value and Minimizing Cost in Multi-Cloud126

Let’s see:

• Join the FinOps table: Actively participate in regular FinOps meetings to discuss cost concerns,
share best practices, and identify optimization opportunities with your colleagues from other
teams. Remember, diverse perspectives often lead to the most innovative solutions.

• Become a cost champion: Don’t just implement cost-saving practices; share your knowledge
and success stories with your team! Motivate others to adopt FinOps principles and create a
ripple effect of cost awareness.

• Gamify the quest: Foster a fun and engaging environment by launching friendly competitions
with cost optimization challenges. Reward innovative solutions and celebrate collective
achievements in reducing cloud costs.

The rewards of a cost-conscious mindset

By embracing shift-left cost management and FinOps, you’re not just saving money – you’re unlocking
a treasure trove of benefits, such as the following:

• Reduced cloud costs: Proactive optimization throughout the development lifecycle leads to
significant cost savings, freeing up resources for innovation and other critical initiatives

• Improved financial transparency: Gaining deeper insights into your application’s resource
usage fosters informed decision-making across all teams involved

• Faster time to market: Identifying and addressing cost issues early prevents delays and accelerates
your time to market, giving you a competitive edge

• Enhanced team collaboration: Shared responsibility for cost optimization breaks down silos
and fosters a more collaborative and engaged development environment

As an application developer, you might be wondering what your responsibility is when it comes to
cost or FinOps. The Responsibility Assignment Matrix (RACI) is a crucial tool that defines the roles
and responsibilities of departments involved in FinOps. It classifies an organization’s departments and
their involvement in FinOps according to four key roles: Responsible, Accountable, Consulted, and
Informed. Let’s have a look at the following example of RACI for an enterprise scenario:

Optimizing cloud resources and minimizing waste 127

 Figure 6.2 – FinOps RACI (R= Responsible, A=Accountable, C=Consulted, I=Informed)

In the next section, we will explore the art of right-sizing cloud resources. This is like choosing the
right-sized canvas for a painting, where every resource contributes to the masterpiece while avoiding
unnecessary excess.

Optimizing cloud resources and minimizing waste
Optimizing cloud resources is an ongoing process that demands constant monitoring, effective
management, and relevant optimization to mitigate the risk of resource waste. Resource waste in the
cloud environment refers to the overprovision of cloud resources that remain unused or idle. The
following graph presents a simple relationship between reducing cloud resources waste and cost savings:

Maximizing Value and Minimizing Cost in Multi-Cloud128

Figure 6.3 – Progressive cost savings through waste optimization

Let’s understand the ways to optimize cloud resources and minimize waste:

• Identify resource waste: To identify resource wastage, do the following:

 � Check your stuff: Regularly look at your cloud resources. Are there any unused or outdated
ones just hanging around, costing you money? Think of it like cleaning out your closet –
getting rid of what you don’t need!

 � Track your spending: Use tools such as AWS Cost Explorer or Azure Cost Management
to see where your money’s going. Are there any surprises? This helps you spot areas where
you can tighten the belt.

 � Look for code culprits: Analyze your app’s logs to see if any parts are using more resources
than they should. Think of it like finding leaky faucets in your code – fix them and save that
precious water (or in this case, money)!

• Right-size cloud resources for efficiency: Once you’ve identified waste, transform it into
savings with rightsizing:

 � Scale up and down automatically: Use tools such as AWS Auto Scaling or Azure Autoscaling
to adjust your resources based on how busy your app is. No more paying for resources you
don’t use, just like turning lights on and off in an empty room!

 � Downsize when you can: If you have resources that are barely used, shrink them down to a
smaller size. Think of it as getting a smaller car if you only drive by yourself most of the time.

 � Get deals on resources you use often: If you know you’ll need certain resources for a long
time, consider buying them in advance at a discount. It’s like buying groceries in bulk –
cheaper in the long run!

Optimizing cloud resources and minimizing waste 129

• Optimize your setup: The third step is optimizing your application setup:

 � Serverless functions: Use these for small tasks that only run sometimes. You only pay when
they run, so it’s like paying for a taxi instead of owning a car.

 � Containers: Package your app in small, efficient containers with tools such as Docker or
Kubernetes. It’s like organizing your stuff in neat little boxes instead of dumping it all in a
big pile.

 � Storage: Choose the right type of storage for your data and set up automatic cleanup for old
stuff you don’t need anymore.

Note
While most cloud providers have built-in tools for cloud cost optimization, third-party tools
are also available. The following tables compile the most relevant in both groups.

Here are some cloud cost optimization tools that can help you apply these practices:

Service Providers Cost Optimization Tools
AWS AWS Pricing Calculator, AWS Cost Explorer, AWS QuickSight, AWS

Budgets, and AWS Tag Editor
Azure Azure Pricing Calculator, Azure Cost Management + Billing, Azure

Power BI, Azure Policy, and Azure Budgets
Google Cloud Platform Google Cloud Pricing Calculator, Google Cloud Billing Reports, Data

Studio, Cost Forecasts, Cost Table Report, and Budget Alerts
Oracle Cloud
Infrastructure (OCI)

OCI Cost Estimator, OCI Cost Analysis, OCI Cost Governance,
Forecasting in cost analysis, OCI Tags, and OCI Budget Alerts

Third-party tools Apptio Cloudability, CoreStack, CloudCheckr, VMware CloudHealth,
Densify, Flexera, Kubecost, CloudVane, NetApp’s Spot.io, Turbonomic,
Nutanix Xi Beam, and CloudAdmin

Table 6.1 – Cost optimization tools

In the following section, we will discuss the crucial task of selecting the appropriate cloud provider
while considering the balance between cost considerations and performance needs. Just as a traveler
chooses the best route for their journey, cloud-native developers choose the cloud provider that best
matches their application’s requirements.

Maximizing Value and Minimizing Cost in Multi-Cloud130

Selecting the right cloud provider based on cost and
performance
In this section, we stand at the intersection of strategic decision-making (depicted in Figure 6.5),
where cloud providers beckon with their offerings. Just as you would carefully choose a route that
balances scenic beauty and efficiency, selecting the right cloud provider involves evaluating a blend
of cost factors and performance metrics:

Figure 6.4 – Selecting the right cloud provider (a trade-off)

Evaluating cloud providers – cost factors and performance
metrics

Choosing the right cloud provider for your workloads can have a significant impact on your cloud
costs and performance. However, comparing cloud providers is not a straightforward task as each
provider has its own pricing model, service offerings, and performance characteristics. In this section,
we will review some of the key considerations when comparing cloud provider pricing models and
how to assess performance and reliability metrics to inform your decision-making.

Selecting the right cloud provider based on cost and performance 131

Cloud provider pricing models

One of the main challenges of comparing cloud providers is that they have different pricing models
for their services. Some of the common factors that affect cloud provider pricing are as follows:

• Resource consumption: This is the amount of resources (such as CPU, memory, disk, network,
and so on) that you use for your workloads. Most cloud providers charge you based on the
amount of resources you consume per hour or second. However, some providers may also
charge you based on other factors, such as requests, transactions, operations, and others.

• Service type: This is the type of service that you use for your workloads. Cloud providers offer
different types of services, such as compute, storage, database, networking, analytics, and others.
Each service type may have different pricing models and tiers, depending on the features and
performance levels they offer.

• Region: This is the geographic location where your workloads run. Cloud providers have
different regions around the world where they operate their data centers and infrastructure.
Each region may have different pricing rates and availability zones for their services.

• Commitment: This is the duration of your contract with the cloud provider. Cloud providers
may offer discounts or incentives for customers who commit to using their services for a certain
period (such as 1 year or 3 years). Alternatively, some providers may also offer pay-as-you-go
or spot pricing options for customers who want more flexibility and lower costs.

To compare cloud provider pricing models effectively, you need to understand how each factor affects
your total cost of ownership (TCO) and return on investment (ROI). You also need to consider your
workload requirements, such as scalability, availability, security, compliance, and so on, and how they
align with each provider’s service offerings.

Performance and reliability metrics

Another important aspect of comparing cloud providers is their performance and reliability metrics.
Performance and reliability metrics measure how well a cloud provider delivers its services to its
customers in terms of speed, quality, availability, and consistency. Some of the common performance
and reliability metrics that you should consider are as follows:

• Latency: This is the time it takes for a request to travel from your application to the cloud
provider’s service and back. Latency affects the responsiveness and user experience of your
application. You should aim for low latency values for your workloads, especially if they are
latency-sensitive or real-time.

• Throughput: This is the amount of data that can be transferred between your application and
the cloud provider’s service in each period. Throughput affects the efficiency and performance
of your application. You should aim for high throughput values for your workloads, especially
if they are data-intensive or high-volume.

Maximizing Value and Minimizing Cost in Multi-Cloud132

• Availability: This is the percentage of time that a cloud provider’s service is operational and
accessible to its customers. Availability affects the reliability and uptime of your application.
You should aim for high availability values for your workloads, especially if they are mission-
critical or SLA-bound.

• Consistency: This is the degree of variation in the performance and reliability metrics of a
cloud provider’s service over time. Consistency affects the predictability and stability of your
application. You should aim for high consistency values for your workloads, especially if they
are sensitive to performance fluctuations or anomalies.

To compare cloud provider performance and reliability metrics effectively, you need to collect and
analyze data from various sources, such as benchmarks, tests, monitoring tools, reports, reviews, and
more. You also need to consider your workload characteristics, such as workload type, workload pattern,
workload distribution, and so on, and how they affect your performance and reliability requirements.

With this, let’s get into data management cost strategies. Managing data efficiently is one of the most
critical aspects for developers.

Data management cost strategies

When your application data volume grows, so does the potential for increased storage and transfer
costs. For developers, implementing smart data management strategies is essential to control these
costs without compromising on data accessibility or compliance. Here are some focused strategies
that developers can use:

• Choose the right data storage solution:

Assess the access patterns and criticality of your data. Based on the factors, choose between
object storage, block storage, or file storage, and select the appropriate tier within these options:

 � Example: For data that is accessed infrequently but requires rapid access when needed,
use Amazon S3’s Infrequent Access tier or Azure’s Cool Blob storage. This can significantly
reduce storage costs compared to using standard storage options.

• Implement data archiving and life cycle policies:

Define life cycle policies for your data. Automate the transition of data to cheaper storage classes
or archival solutions as it ages and access patterns change:

 � Example: Set up a life cycle policy on your S3 buckets to automatically transition older files to
Glacier for archival, reducing storage costs while keeping the data available for future needs

Selecting the right cloud provider based on cost and performance 133

• Optimize data transfer costs:

Be mindful of the costs associated with data transfer, especially in a multi-cloud environment.
Optimize the data flow to minimize transfers between services and regions:

 � Example: If your application involves moving large amounts of data between AWS and
on-premises regularly, consider setting up AWS Direct Connect to reduce data transfer
costs and improve transfer stability

• Leverage data compression and deduplication:

Implement data compression and deduplication to reduce the storage footprint. This not only
saves on storage costs but can also reduce the bandwidth required for data transfer:

 � Example: Use data compression algorithms such as GZIP for your log files before storing
them. For backups, use deduplication features available in backup services to store unique
data, reducing storage needs.

• Utilize caching mechanisms:

Use caching to reduce database load and minimize the need for larger, more expensive database
instances. Cache read-heavy data or frequently accessed computations:

 � Example: Use Redis or Memcached to cache frequently queried database results or
compute-intensive calculations, reducing the load on your databases and improving
application performance

• Monitor and optimize query performance:

Regularly monitor and optimize your database queries. Poorly optimized queries can lead to
increased load and more expensive scaling needs:

 � Example: Use query performance insights and recommendations provided by cloud
database services such as AWS RDS or Azure SQL Database to identify and optimize slow
or inefficient queries

By adopting these data management cost strategies, developers can effectively control and reduce the
costs associated with data storage and transfer in cloud-native applications. It requires a proactive
approach, regular monitoring, and continuous optimization to ensure that your data management
practices are both cost-effective and aligned with your application’s needs.

Next, we’ll look at the critical arena of governance and cost control.

Maximizing Value and Minimizing Cost in Multi-Cloud134

Governance and cost control
As you build cloud-native applications in a multi-cloud environment, it’s vital to manage governance
and cost control effectively. This involves creating policies and frameworks that ensure compliance,
security, and cost efficiency. To help you achieve this, we have outlined some practical steps:

1. Establish clear governance policies:

Establish well-documented policies for cloud resource usage, security compliance, and cost
management. Ensure that these policies are accessible and understood by all team members:

 � Example: Create a policy that defines naming conventions, tagging requirements, and
provisioning protocols for cloud resources. This ensures that resources are easily identifiable,
correctly categorized, and consistently monitored for cost analysis.

2. Implement role-based access control (RBAC):

With the support of cloud and platform engineers, use RBAC to define and enforce access
controls to cloud resources based on team members’ roles. Ensure that individuals have the
minimum necessary permissions to perform their tasks on your applications, reducing the risk
of costly errors or security breaches.

3. Leverage cost management tools:

Utilize built-in cost management tools provided by cloud providers. These tools help monitor,
analyze, and optimize cloud spending for your application workload:

 � Example: Use AWS Cost Explorer, Azure Cost Management + Billing, or Google Cloud’s
Cost Management tools to track spending patterns, set budgets, and receive alerts when
your application spending exceeds predefined thresholds

4. Automate policy enforcement:

With the support of cloud and platform engineers, automate the enforcement of governance
and cost control policies wherever possible. This minimizes the reliance on manual processes
and helps in maintaining consistent compliance and cost efficiency:

 � Example: Use Infrastructure as Code (IaC) tools such as Terraform or AWS CloudFormation
to automate the provisioning of cloud resources in compliance with your organization’s
governance policies. Implement scripts within the CI/CD pipeline or use cloud provider services
to automatically shut down or scale down underutilized resources during off-peak hours.

By implementing these governance and cost control strategies, developers can ensure that their cloud-
native applications in a multi-cloud environment are not only secure and compliant but also cost-
efficient. It’s about being proactive, leveraging the right tools, and fostering a culture of accountability
and continuous improvement.

With this, let’s look at some interesting use cases so that we can connect the dots.

Cloud provider comparison case studies 135

Cloud provider comparison case studies
In this section, we will look at some real-world examples of cost and performance trade-offs in
multi-cloud environments. We will see how different organizations have achieved cost savings through
strategic cloud provider selection based on their workload requirements.

Case study 1 – eCommerce giant slashes costs by 50% with a
multi-cloud microservices approach

A rapidly growing eCommerce platform faced soaring cloud bills due to a monolithic architecture and
single cloud dependency. Scaling meant proportional cost increases, jeopardizing their growth ambitions:

• Cost optimization tactics:

 � Microservices revolution: They decoupled the monolith into modular, containerized
microservices, enabling the following:

 � Fine-grained scaling: They scaled individual services based on real-time demand,
maximizing resource utilization and minimizing idle costs.

 � Multi-cloud cost targeting: They matched cost-sensitive services with budget-friendly
cloud providers. Static assets served efficiently on Google Cloud Storage, while mission-
critical data resided in Azure’s high-availability databases.

 � Serverless-savvy: They leveraged serverless functions for short-lived tasks, eliminating idle
server costs and aligning expenses with usage patterns

 � FinOps Foundation: They implemented cost allocation, chargeback models, and financial
governance to foster cost awareness and accountability across teams

• Outcome:

 � 50% cloud cost reduction: By combining technical solutions with strong financial governance,
they achieved significant cost savings

 � Increased business agility: Microservices facilitated faster deployments and improved
scalability, supporting rapid growth without cost concerns

• Key cost optimization takeaway: Microservices, multi-cloud, and serverless functions, when
coupled with FinOps principles, empower eCommerce businesses to achieve significant cost
savings while maintaining agility

Maximizing Value and Minimizing Cost in Multi-Cloud136

Case study 2 – social media app optimizes costs by 30% with
containers and automation

A thriving social media app grappled with high infrastructure costs due to manual provisioning,
inefficient resource utilization, and limited cost visibility:

• Cost optimization tactics:

 � Containerization efficiency: They packaged the app into standardized containers, enabling
the following aspects:

 � Cloud-agnostic deployments: They moved containers between cloud providers based on
cost, performance, and regional requirements, optimizing resource allocation

 � Reduced resource footprint: They shared the underlying operating system within containers,
minimizing resource consumption and server costs

 � IaC for cost control: They utilized IaC to automate infrastructure provisioning, eliminating
manual errors and ensuring consistent, cost-effective configurations

 � Continuous cost monitoring: They implemented cloud-native cost management tools for
real-time cost insights, identifying and addressing cost inefficiencies proactively

 � FinOps culture: They invested in FinOps training and skills development, fostering
collaboration and a shared understanding of cloud cost management across teams

• Outcome:

 � 30% infrastructure cost reduction: Automation, containerization, and continuous cost
monitoring delivered substantial cost savings

 � Improved operational efficiency: Automated processes minimized human error and freed
up valuable developer time

 � Enhanced resource utilization: Standardized containers and IaC ensured optimal resource
usage across cloud environments

• Key cost optimization takeaway: Containerization, automation, and continuous cost monitoring,
combined with a FinOps culture, enable social media companies to achieve significant cost
savings and operational efficiency while maintaining high availability and scalability

Remember
These case studies offer valuable insights, but your optimal approach depends on your specific
cloud environment and workload patterns. Continuously explore new technologies, embrace
a culture of cost awareness, and leverage a holistic FinOps approach to maximize your cloud
cost optimization journey.

Summary 137

Summary
As we draw the curtains on our exploration of optimizing costs for cloud-native applications in a multi-
cloud environment, it’s imperative to reflect on the transformative journey we’ve undertaken. From
understanding the intricacies of cost management to implementing sophisticated FinOps practices,
and from right-sizing resources to selecting the perfect cloud provider, each step has been a stride
toward achieving a harmonious blend of technical excellence and financial mindfulness.

The importance of cost optimization goes beyond mere budgetary considerations. It’s about forging a
symbiotic relationship between innovation and financial prudence. Much like an artist selects colors
to bring a canvas to life, cloud-native developers orchestrate resources to bring their applications to
fruition. But just as an artist plans brush strokes meticulously, developers must architect their solutions
with an eye on cost efficiency from the very inception.

As a cloud-native developer, you’re not just a coder; you’re an architect of the digital kingdom. Your
decisions shape the future of applications, infrastructure, and businesses. By implementing the
principles of cost optimization, you’re not only contributing to the fiscal health of your organization
but also fostering an environment of responsible growth and continuous improvement.

With a heart brimming with newfound insights, turn the page to embark on the next leg of our journey.
In the following chapter, we’ll delve into the realm of troubleshooting cloud-native applications in
multi-cloud environments. As you’ll soon discover, the skills you’ve honed in optimizing costs will
stand as pillars of resilience when navigating challenges in the cloud-native landscape.

7

Troubleshooting
 Multi-Cloud Applications

As we discussed in earlier chapters, cloud-native applications offer several advantages over traditional
monolithic applications. Troubleshooting cloud-native applications is important because it can help to
ensure that your applications are up and running and performing well. In this chapter, you will gain
insights into the complexities that unfold when a cloud-native application in a multi-cloud environment
doesn’t function as anticipated. We’ll explore the ripple effects of such issues and the challenges they
pose, from degraded end user experiences to potential business disruptions. We’ll delve into the use
of dedicated cloud-native tools and techniques and how they can be leveraged to manage and rectify
issues in this complex setup.

To bring these concepts to life, we’ll be exploring some case studies that exemplify the common issues
developers face in a multi-cloud environment. These scenarios will help illustrate how to streamline
microservices communication, how to manage data consistency, and how to identify scaling challenges
in multi-cloud environments. Throughout this chapter, we’ll equip you with the knowledge and
practical skills needed to effectively troubleshoot in a multi-cloud environment, fostering a robust,
resilient, and efficient cloud-native application development journey.

The following topics will be covered in this chapter:

• Importance of troubleshooting in cloud-native development

• Challenges of troubleshooting cloud-native applications

• Tips for troubleshooting cloud-native applications

• Establishing an effective troubleshooting process for cloud-native applications

• Case studies

• SRE in multi-cloud environments

• Chaos engineering

Troubleshooting Multi-Cloud Applications140

Importance of troubleshooting in cloud-native development
As an organic outcome of the complexities within multi-cloud and cloud-native environments,
troubleshooting is an essential skill. The ability to effectively diagnose and resolve issues is crucial,
not only for maintaining the smooth operation of applications but also for safeguarding the broader
interests of the business. Let’s delve into why troubleshooting is vital and the impact of unresolved
issues in cloud-native applications:

• Reduced productivity and its implications:

 � Impact on developer efficiency: Challenges in cloud-native applications can significantly
hinder the productivity of developers. When applications malfunction, developers may face
delays or spend excessive time resolving issues, leading to decreased efficiency and potential
project setbacks.

 � Business costs: Reduced productivity due to application issues can translate into financial
losses for businesses. Time spent troubleshooting could otherwise be used for development,
innovation, or customer service, directly impacting the company’s bottom line.

• Lost revenue and customer trust:

 � Customer experience and sales: Functional issues in cloud-native applications can directly
affect customer interactions and sales. For instance, if an e-commerce platform experiences
downtime or glitches, it may result in lost sales and dissatisfied customers.

 � Long-term brand impact: Consistent issues with cloud-native applications can erode customer
trust and damage the company’s reputation. In competitive markets, this can lead to a loss
of clientele and long-term revenue decline as customers seek more reliable alternatives.

• Damaged reputation and market position:

 � Perception of unreliability: Frequent or unresolved issues in cloud-native applications can
lead to a perception of unreliability and unprofessionalism, affecting the company’s market
position and ability to attract new customers.

 � Case study: Financial services reliability: For example, a financial services company with a
frequently malfunctioning online banking app may lose customer trust, leading to a decrease
in user base and revenue. This not only impacts immediate transactions but can also harm
the company’s long-term brand value and customer loyalty.

Next, we will explore the unique challenges of troubleshooting in cloud-native applications within
multi-cloud environments. We’ll examine common issues and provide practical strategies to effectively
address these challenges, ensuring that cloud-native applications are reliable and efficient and contribute
positively to the business’s success.

Challenges of troubleshooting cloud-native applications 141

Challenges of troubleshooting cloud-native applications
There are a number of challenges associated with troubleshooting cloud-native applications in a
multi-cloud environment. These challenges include the following:

• Complexity: Cloud-native applications tend to have a higher level of complexity compared
to traditional monolithic applications. These applications are often composed of multiple
microservices and components, which can be distributed across different cloud providers and
platforms. As a result, managing and monitoring the performance, reliability, and security of
these applications can be quite challenging.

The intricate nature of cloud-native applications often makes it difficult to pinpoint the source of
a problem, as issues can stem from various components, such as the infrastructure, networking,
or the application code itself. Furthermore, the diverse range of cloud services, APIs, and tools
used in these applications can complicate troubleshooting, as engineers may need to go through
multiple logs, metrics, and alerts to identify and resolve issues.

• Heterogeneity: The diverse landscape of cloud providers presents its own set of challenges
when managing and monitoring cloud-native applications. Each cloud provider offers a
unique set of features, services, and tools that cater to specific use cases and requirements.
This heterogeneity can lead to difficulties when troubleshooting problems that are specific to
a particular cloud provider, as the root cause of an issue may be tied to a provider’s unique
infrastructure or service offering.

The varying features and services across cloud providers can also complicate the process of
creating a unified monitoring and management strategy. Engineers may need to familiarize
themselves with multiple monitoring tools, APIs, and management consoles to effectively diagnose
and resolve issues. Additionally, the lack of standardization in logging and metrics formats can
further hinder the process of correlating and analyzing data across different cloud providers.

• Data silos: In cloud-native applications, data is often distributed across various storage systems,
databases, and services, creating isolated pockets of information known as data silos. These
data silos can impede the ability to efficiently gather, analyze, and correlate the necessary data
for troubleshooting problems and making informed decisions.

The disparate nature of data silos can lead to several challenges, including the following:

 � Inefficient data access: Developers may need to access multiple data sources and systems
to retrieve the required information, which can be time-consuming and labor-intensive

 � Incomplete insights: Data silos can result in a fragmented view of the application’s performance,
making it difficult to identify trends and correlations across different components and services

 � Data inconsistencies: As data is stored in different formats and structures across various
systems, reconciling and normalizing this information for analysis can be a complex and
error-prone task

Troubleshooting Multi-Cloud Applications142

 � Collaboration barriers: Data silos can hinder collaboration between different teams within
an organization, as each team might have access to only a subset of the overall data, leading
to disjointed problem-solving efforts

After learning about the challenges of troubleshooting cloud-native applications in multi-cloud
environments, let’s review some tips for overcoming them.

Tips for troubleshooting cloud-native applications
Despite the challenges, there are a number of things that you as a developer can do to troubleshoot
cloud-native applications in a multi-cloud environment. Here are some tips:

• Use a centralized monitoring tool

• Use a cloud-native logging tool

• Use a cloud-native debugging tool

• Use a cloud-native observability platform

Let us understand each one of them one by one.

Use a centralized monitoring tool

To handle the complexities, it is more important than ever to have a comprehensive monitoring
solution in place. A centralized monitoring tool, such as the open source Zabbix or the paid offering
from Datadog, can help you collect and view data from all of your cloud-native applications in one
place, making it easier to identify and troubleshoot problems. In addition to its overarching benefits,
employing a centralized monitoring tool offers a host of specific advantages:

• Streamlined data collection: A centralized monitoring tool collects data from multiple sources,
including microservices, cloud providers, and third-party services. By aggregating data in one
place, developers can save time and resources that would otherwise be spent on managing
multiple monitoring systems.

• Consistent monitoring metrics: Centralized monitoring ensures that all data collected follow
a consistent format and structure, making it easier for developers to analyze and compare
performance metrics across different services and cloud providers. This consistency allows
developers to identify trends, anomalies, and bottlenecks more effectively.

• Comprehensive visibility: With a centralized monitoring tool, developers gain a comprehensive
view of their application’s performance and health across multiple cloud providers. This increased
visibility enables them to quickly identify and diagnose issues, reducing the time it takes to
pinpoint and resolve problems.

Tips for troubleshooting cloud-native applications 143

• Customizable dashboards and alerts: Centralized monitoring tools often provide customizable
dashboards and alerting systems, allowing developers to tailor the monitoring experience to
their specific needs. This customization enables developers to focus on the most critical aspects
of their application, ensuring that potential issues are identified and addressed promptly.

• Simplified troubleshooting: By consolidating monitoring data in one place, developers can
more easily correlate events and identify the root cause of problems. This streamlined approach
to troubleshooting reduces the time and effort required to resolve issues and minimizes the
impact on application performance.

• Scalability and flexibility: Centralized monitoring tools are designed to handle large volumes
of data and adapt to the growing needs of cloud-native applications. As the application scales,
the monitoring tool can easily accommodate new services and cloud providers without
compromising performance or reliability.

There are a number of different centralized monitoring tools available, so it is important to choose
and consider a trade-off that meets your specific needs.

Choosing a centralized monitoring tool for your needs

When choosing a centralized monitoring tool, consider the following factors:

• Data types: Determine the types of data the tool can collect, such as logs, metrics, and traces.
Ensure that it can gather the necessary information to provide comprehensive insights into
your application’s performance and health.

• Features and functionality: Assess the features offered by the tool, such as data visualization,
alerting, anomaly detection, and integrations, in accordance with other systems. The tool
should provide a robust set of capabilities to streamline monitoring and troubleshooting tasks.

• Pricing and scalability: Consider the cost of the tool, taking into account not only the initial
investment but also any additional expenses associated with scaling or adding new features.
Choose a tool that fits within your budget and can grow with your organization’s needs.

• Compatibility: Verify that the tool supports the various cloud providers, platforms, and
technologies you’re using in your multi-cloud environment. This ensures seamless integration
and consistent monitoring across different cloud services.

• Configure alerts: One of the most crucial aspects of using a centralized monitoring tool is
setting up alerts to notify you when problems arise. This enables you to quickly identify and
resolve issues before they impact your users.

• Regularly review data: It’s essential to routinely analyze the data collected by your centralized
monitoring tool. This proactive approach helps you detect potential problems before they
escalate into outages.

Troubleshooting Multi-Cloud Applications144

• Leverage data for application improvement: The data gathered by your centralized monitoring
tool can be instrumental in enhancing your applications. For instance, you can identify bottlenecks
and performance issues by analyzing the data, which allows you to make informed decisions
for optimizing your application’s performance.

• Collaborate with team members: Share monitoring insights with your team members to
encourage collaborative problem-solving and foster a culture of continuous improvement.
This collective approach helps teams identify and resolve issues more efficiently, ultimately
enhancing the overall performance and reliability of cloud-native applications.

• Collaborative problem-solving: A centralized monitoring tool enables developers to share
data and insights with other team members, fostering collaboration and knowledge sharing.
This collaborative approach helps teams identify and resolve issues more quickly and efficiently,
leading to continuous improvement and the optimization of the application.

By considering these factors, you can make an informed decision when choosing a centralized monitoring
tool that meets your organization’s needs and enhances the monitoring and troubleshooting process
in a multi-cloud environment. The following illustration (Figure 7.1) highlights some of the common
key features of a central monitoring tool designed to streamline data collection, provide consistent
metrics, offer comprehensive visibility, and simplify troubleshooting across cloud-native applications:

Figure 7.1 – Common features of a centralized monitoring tool

Use a cloud-native logging tool

Apart from monitoring, leveraging a cloud-native logging tool is crucial for efficiently managing,
troubleshooting, and maintaining applications in a cloud environment. These tools have been specifically
engineered to address the intricacies and unique requirements of cloud-native applications, offering
advanced features for log collection, aggregation, analysis, and storage.

Logging is an essential technique for troubleshooting cloud-native applications. In a multi-cloud
environment, logging encourages the collection and centralization of computer logs across the
application’s services. Computer logs usually contain designed attributes that reflect the state of the
application at a given timestamp. Additional abstraction layers can be added to facilitate data analysis
and extract decisive clues about the application’s incidents. Some of the best practices for logging
cloud-native applications are listed here:

• Centralized logging: In a multi-cloud environment, it becomes essential to define strategies for
centralized logging with the purpose of simplifying log management. Different cloud providers
and services distributed across the realm of the multi-cloud can provide logs that are different in
format and content. The figure that follows depicts how logs from different services are received

Tips for troubleshooting cloud-native applications 145

by a centralized unit. Log aggregation techniques ensure that the logs of different providers are
standardized before being visualized and analyzed in troubleshooting tools.

• Design logging attributes: It is important to carefully design the attributes that will be collected
during a logging routine. Logging customer data can put compliance at risk. Remember that the
purpose of logging is to troubleshoot application instabilities, so make sure to log only essential
attributes for technical analysis. Overcharged log files may impact application performance
and hardware consumption, which, in the multi-cloud environment, can result in additional
computing costs.

• Real-time logging: Logging in real time can provide invaluable insights for service failure or
shutdowns. Real-time logging ensures that your application records computer events as they
happen, reducing the risk of losing logs when services shut down.

With a cloud-native logging tool, such as the open source Elasticsearch, Logstash, and Kibana
(ELK) stack, as well as the paid offering from Splunk, you can centralize logs from a wide range of
components and services, allowing for the quick identification of issues, patterns, and areas of concern.
Many of these tools support real-time log analysis and visualization, which empowers teams to detect
anomalies and proactively tackle potential problems before they escalate.

Additionally, cloud-native logging tools often facilitate seamless integration with other cloud-native
services and tools, enhancing overall workflow efficiency and collaboration among team members.
These tools also provide customizable dashboards and reporting features, enabling the easy sharing
of insights and trends with various stakeholders across the organization.

By incorporating a cloud-native logging solution into the technology stack, organizations can strengthen
application reliability, reduce downtime, and streamline debugging processes, ultimately ensuring a
high level of service quality in a complex cloud environment.

Let’s take a visual tour (Figure 7.2) of the ELK stack—a prominent cloud-native logging solution for
managing, analyzing, and visualizing logs in cloud environments—architecture overview:

Figure 7.2 – High-level architecture of the ELK stack

Use a cloud-native debugging tool

As we continue digging deeper, the cloud-native debugging tools are essential for effectively managing
and resolving issues in cloud environments. These tools are specifically developed to address the unique
challenges of cloud-native applications, offering advanced features tailored for distributed systems
and microservices, such as Kubernetes or serverless architectures.

Troubleshooting Multi-Cloud Applications146

A cloud-native debugging tool, such as the open-source project Telepresence or the paid offering from
Rookout, enables you to inspect application behavior in real time, trace requests across services, and
swiftly identify the root causes of issues. These tools often provide interactive debugging capabilities,
breakpoints, and code-stepping functionality, empowering teams to proactively address potential
problems and gain a deeper understanding of their application’s inner workings.

Additionally, cloud-native debugging tools typically integrate seamlessly with other cloud services and
platforms, such as container orchestration systems, monitoring tools, and logging solutions, ensuring
smooth workflows and collaboration among team members.

By incorporating a cloud-native debugging solution, such as Telepresence or Rookout, into their
technology stack, organizations can enhance application reliability, minimize downtime, and optimize
development and troubleshooting processes, ultimately maintaining highly available and reliable
services in a complex cloud environment.

Figure 7.3 provides a visual glimpse of a Rookout environment, a powerful cloud-native debugging tool,
in action. In the following screen capture, the routing system directed a user request to homePage.
js, reaching a breakpoint in line 5. When the code execution reaches this line, it will take a live
snapshot of a collection of runtime attributes, including variables, processes, execution chains, and
tracing of services. In the bottom-right section, we can observe the value of multiple variables. For
example, at the time of the breakpoint, the value of the data variable was an object with some filtering
options and the value of some text fields.

Observing runtime attributes in real time provides valuable information about the state of our
application in a time-stamp:

Figure 7.3 – Sample Rookout environment

Tips for troubleshooting cloud-native applications 147

Use a cloud-native observability platform

For cloud platform engineers, utilizing a cloud-native observability platform, such as Prometheus (open
source) or Dynatrace (paid), is essential for effectively managing, monitoring, and troubleshooting
applications in a cloud environment. These platforms are designed to address the unique challenges
of cloud-native applications, providing comprehensive insights into system health and performance
across distributed systems and microservices.

With a cloud-native observability platform, developers can collect, analyze, and visualize metrics,
logs, and traces from various components and services, enabling rapid identification of issues and
trends. These platforms often support real-time data analysis, alerting, and anomaly detection, helping
development teams proactively address potential problems.

Additionally, cloud-native observability platforms, such as Grafana (open source) or New Relic (paid),
offer seamless integration with other cloud-native services and tools, facilitating streamlined workflows
and collaboration for developers. They provide customizable dashboards and advanced visualization
capabilities, allowing developers to create tailored views of their applications’ performance.

By adopting a cloud-native observability solution, organizations can maintain application reliability,
minimize downtime, and optimize resource usage in a cloud environment. Furthermore, developers
are empowered to create and maintain high-quality applications, ensuring seamless user experiences
and efficient development processes.

Leveraging these observability platforms not only accelerates troubleshooting but also fosters a culture
of continuous improvement, enabling developers to learn from past incidents and proactively optimize
their applications for better performance and resilience.

Figure 7.4 illustrates the Prometheus architecture, an open source cloud-native observability platform,
showcasing its core components and their interactions. Let’s have a closer look at each of the components
of Prometheus:

• Prometheus server: This is the core element of Prometheus and is responsible for scraping and
collecting metrics from configured endpoints at specified intervals. The Prometheus server is
designed to be highly available and reliable, and it is usually deployed as a standalone server,
ensuring its correct functioning when other parts of the architecture are broken.

• Service discovery: Prometheus can be integrated with Kubernetes thanks to a service discovery
unit. File-based service discovery is implemented to provide Prometheus with a list of targets—
usually exposed through defined endpoints—from which to scrape metrics.

• Pushgateway: This unit is used to handle short-lived jobs. If a job might disappear before
Prometheus scrapes its metrics, then it can push the metrics to the pushgateway, and Prometheus
will pull the metric from there.

• Alerting: This component manages the alerts sent by Prometheus. It collects the alerts from the
server and duplicates them before sending them to configured channels (email, PagerDuty, etc.).

Troubleshooting Multi-Cloud Applications148

The following figure illustrates the Prometheus architecture:

Figure 7.4 – Prometheus architecture

Use a service mesh

Service mesh could be one option when developing applications in a cross-cloud environment. Since
we have covered the fundamentals in earlier chapters, let's take a look from a troubleshooting point of
view. A service mesh is a network of software components that can help you manage and secure your
cloud-native applications. A service mesh, such as Istio (open source) and Linkerd (open source),
can be a valuable tool for a cloud-native developer in a multi-cloud environment when it comes to
troubleshooting. By providing a consistent and unified layer of communication, monitoring, and
security for microservices, a service mesh can simplify and streamline the troubleshooting process.
A service mesh can help a cloud-native developer in a multi-cloud environment with troubleshooting
in the following ways:

• Observability: A service mesh collects telemetry data, such as request traces, logs, and metrics
from all microservices, making it easier to monitor the performance and health of services
across multiple cloud providers. This increased visibility allows developers to quickly identify
and diagnose issues, pinpointing the root cause of a problem.

• Tracing and debugging: A service mesh enables distributed tracing, which helps developers
follow the flow of requests across microservices and gain insights into latency, errors, and
bottlenecks. This can help identify issues related to interservice communication or performance,
even in complex and distributed multi-cloud environments.

Tips for troubleshooting cloud-native applications 149

• Traffic management: With a service mesh, developers can control and shape the traffic between
microservices using features such as load balancing, circuit breaking, and retries. This helps
to manage and isolate issues during troubleshooting, ensuring minimal impact on the rest of
the application.

• Consistent security: A Service mesh provides a consistent security layer across all microservices,
regardless of the cloud provider. By managing authentication, authorization, and encryption,
developers can troubleshoot security-related issues more effectively and maintain secure
communication between services.

• Fault injection and chaos testing: A service mesh allows developers to inject faults and
perform chaos testing to proactively identify and address potential issues before they occur
in production. This helps to improve the resilience and reliability of applications deployed in
multi-cloud environments.

• Centralized control plane: A service mesh comes with a centralized control plane that allows
developers to configure and manage microservices across different cloud providers. This simplifies
troubleshooting by providing a single point of control and visibility for the entire application.

• Multi-cloud compatibility: Service mesh solutions are designed to work across different cloud
providers, ensuring that developers can consistently apply troubleshooting techniques and best
practices, regardless of the underlying infrastructure.

By leveraging a service mesh, a cloud-native developer can simplify and streamline the troubleshooting
process in a multi-cloud environment, reducing the complexity and time required to diagnose and
resolve issues.

Choosing the right service mesh for your needs

There are many service meshes available in the market, so it’s essential to select one that caters to your
specific requirements. When choosing a service mesh, consider the following factors:

• Features and functionality: Evaluate the features offered by the service mesh, such as traffic
management, security, observability, and resilience. The service mesh should provide a
comprehensive set of capabilities that help you effectively manage and monitor your
microservices architecture.

• Pricing and scalability: Consider the cost of implementing a service mesh technology,
taking into account not only the initial investment but also the recurrent and additional costs
related to new features or scaling your application. The costs should adjust to your budget and
organizational goals.

• Compatibility and interoperability: Ensure that the service mesh supports the various platforms,
technologies, and programming languages used within your organization. This guarantees
seamless integration and consistent management across your microservices environment.

Troubleshooting Multi-Cloud Applications150

• Community and support: Investigate the service mesh’s community, documentation, and
support options. A strong community and accessible resources can help you quickly address
any issues or questions that arise during implementation and ongoing management.

By considering these factors, you can make an informed decision when choosing a service mesh that
meets your organization’s needs and enhances the management and observability of your microservices
in a multi-cloud environment.

Figure 7.5 depicts Istio, employed as an ingress gateway within a service mesh. The accompanying
flowchart was generated using Kiali, an open source observability and visualization tool. Kiali can help
us visualize the complex flow of traffic between microservices and the complex architectures established
through Istio that rule microservices intercommunication in our application. The following diagram
provides the microservice architecture for the products page, which then either leads to expanded
details or to the reviews of the product. Each of the microservices is independent and can communicate
with each other through APIs or other protocols. The ingress Gateway is a component from Istio that
helps manage incoming and outgoing traffic to the service mesh. It is the entry point to the service
mesh and provides an additional layer for policy reinforcement and better traffic management:

Figure 7.5 – Kiali graph tab with Istio Ingress gateway

Use a cloud-native configuration management tool

For platform engineers, employing a cloud-native configuration management tool, such as Ansible
(open source) or Terraform (open source), is crucial for managing and automating the configuration
of cloud-native applications across multi-cloud environments. These tools help ensure that applications

Tips for troubleshooting cloud-native applications 151

are always configured correctly, which can help to prevent problems like manual errors and reduce
the time spent on manual configuration tasks. Here’s how such tools can be helpful:

• Centralized configuration: These tools help manage the configuration settings for all services,
making it easy to track, modify, and maintain configurations across different environments.
This can help in identifying and resolving issues caused by misconfigurations.

• Version control: By integrating with version control systems, these tools allow developers
to track changes to configuration files, making it easier to identify when a change may have
introduced an issue. This enables faster rollback to a previous, stable state.

• Consistency and automation: The tool ensures consistency for configuration settings across
all instances of a service or application, reducing the risk of environment-specific issues. The
automated deployment of configuration changes also reduces the likelihood of human errors
during manual updates.

• Monitoring and auditing: Configuration management tools can monitor and audit configuration
changes, enabling developers to detect unauthorized or unexpected changes that may lead to
issues. This feature also helps in maintaining compliance with security and industry regulations.

• Faster problem resolution: By providing visibility to the configuration state of the services,
developers can quickly identify misconfigurations or inconsistencies that may be causing issues.
This accelerates the troubleshooting process and reduces downtime.

By adopting these tools, it helps developers collectively maintain application reliability, minimize
downtime, and optimize resource usage in a cloud environment. Moreover, developers can focus
on delivering value through their applications, ensuring seamless user experiences and efficient
development processes. These tools also contribute to troubleshooting by enabling the rapid detection
and resolution of configuration-related issues, thereby accelerating incident response and recovery
times. Figure 7.6 illustrates the high-level components of Terraform, The Terraform configuration files
describe the resource allocation and infrastructure to be created by the cloud provider. After that, the
core element of Terraform takes and interprets the configuration files and prepares the corresponding
request for each cloud provider. Finally, Terraform stores the state of the managed architecture and
infrastructure, and this contains a mapping between resources in your configuration files and the
real-world entities they represent. This can be viewed in Figure 7.6:

Figure 7.6 – Terraform components

Troubleshooting Multi-Cloud Applications152

In addition to these tools in place, it is also important to have a well-defined process for troubleshooting
cloud-native applications. This will be discussed in the next section.

Establishing an effective troubleshooting process for
cloud-native applications
To effectively tackle problems in a multi-cloud environment, it is essential to have a clearly defined
approach for debugging cloud-native apps. The following are the steps to set up such a procedure:

Figure 7.7 – Flowchart for troubleshooting cloud-native applications for developers

Step 1 – Detecting the issue

Detecting an issue is the first and most crucial step in the troubleshooting process. By identifying
and acknowledging problems quickly, you can minimize the impact on end-users and application
performance. In this context, detecting an issue consists of two primary methods:

Establishing an effective troubleshooting process for cloud-native applications 153

• Receive an alert from monitoring and observability tools: Cloud-native developers should
rely on well-configured monitoring and observability platforms to detect issues proactively.
These tools collect, analyze, and visualize metrics, logs, and traces from various application
components and services. By setting up alerting rules based on key performance indicators
(KPIs), error rates, latency thresholds, or resource utilization, developers can be notified as
soon as an issue arises. Alert notifications can be delivered through various channels such as
email, SMS, or chat platforms, ensuring that the responsible team members are informed and
can take immediate action.

• Observe abnormal behavior in logs or metrics: In addition to automated alerts, cloud-native
developers can receive support from platform engineers to review the logs, metrics, and
visualizations provided by their observability tools. Regularly examining these data allows
developers to spot abnormal behavior or anomalies that may not have triggered an alert but
could still indicate a potential issue. For example, a sudden spike in resource usage or an
increase in error rates may warrant further investigation. By proactively monitoring the health
and performance of their applications, developers can identify and address issues before they
escalate into more significant problems or impact end-users.

Detecting issues in a timely manner is a critical aspect of maintaining and enhancing cloud-native
applications. Cloud-native developers should leverage monitoring and observability tools, configure
effective alerting mechanisms, and actively review application data to ensure quick identification and
response to any issues that arise in their multi-cloud environments.

Step 2 – Isolate the problem

Isolating the problem is the next crucial step in the troubleshooting process. Pinpointing the root
cause of an issue helps to minimize the time spent on debugging and ensures that the appropriate
corrective measures are taken.

In the context of isolating the problem, developers should focus on identifying the affected component(s)
or service(s) within your application or external dependencies. As was covered in earlier chapters,
cloud-native applications often consist of multiple microservices and components that interact with
one another, as well as external dependencies (e.g., cloud provider services or third-party APIs). As a
cloud-native developer, you should first determine which component or service within your application
is affected by the issue. This can be achieved by analyzing the logs, metrics, and traces collected by
your observability tools. Look for error messages, increased latencies, or any other anomalies that
may help pinpoint the problematic component(s) or service(s).

In addition to examining your application components, it’s essential to consider the role of external
dependencies in the issue. Cloud-native applications often rely on various cloud provider services
and third-party APIs, and problems in these dependencies can also impact your application. Review
the status pages, documentation, and support channels of these external dependencies to identify any
known issues or outages that may be contributing to the problem.

Troubleshooting Multi-Cloud Applications154

Isolating the problem area in a cloud-native application is a critical aspect of effective troubleshooting.
Cloud-native developers should leverage their observability tools and insights from logs, metrics,
and traces to identify the affected component(s) or service(s) within their application or external
dependencies. By doing so, developers can focus their efforts on the most relevant areas and work
towards resolving the issue more efficiently, ultimately minimizing the impact on end-users and
application performance.

Step 3 – Analyze and diagnose

The analysis and diagnosis step is critical in the troubleshooting process for cloud-native developers.
It involves a systematic approach to understanding the nature and cause of issues encountered in
cloud-native applications, particularly in multi-cloud environments. As a developer, you should
perform the following actions:

• Examine application logs, metrics, and traces to understand the issue: it’s crucial to thoroughly
examine logs, metrics, and traces collected from your application and its components. These
data sources provide valuable insights into the application’s behavior, helping you understand the
nature and scope of the issue at hand. By analyzing this information, you can identify patterns,
anomalies, and possible correlations that can guide your troubleshooting efforts.

• Review recent changes in the code, configuration, or deployment: Investigate any recent changes
made to the codebase, configuration files, or deployment process that could be contributing
to the issue. Comparing the current state of the application with a previous, stable version can
reveal discrepancies that may be causing the problem. Identifying and reverting or fixing these
changes can help resolve the issue.

• Consult relevant documentation, forums, or known issues related to your tech stack: Research
and consult documentation, online forums, and known issue repositories related to your
technology stack to gain insights into the issue you’re facing. Others in the cloud-native
community might have encountered similar problems and shared their solutions, workarounds,
or insights. Gathering information from these sources can help you diagnose the problem more
effectively and efficiently.

• Utilize debugging tools to pinpoint the root cause: Employ cloud-native debugging tools to
dive deeper into your application’s behavior and identify the root cause of the issue. Debugging
tools can provide real-time insights into application execution, allowing you to trace requests
across services, set breakpoints, and step through the code. By using these tools, you can gain
a comprehensive understanding of the issue, which can help you develop a targeted solution.

In summary, analyzing and diagnosing issues in a cloud-native application involves a combination of
examining logs, metrics, and traces, reviewing recent changes, consulting external resources, and using
debugging tools. As a cloud-native developer, mastering these techniques is essential for efficiently
diagnosing and resolving issues in a multi-cloud environment.

Establishing an effective troubleshooting process for cloud-native applications 155

Step 4 – Create, test, and deploy the solution

Implementing the solution is an essential step in the troubleshooting process. After developing and
testing the fix or workaround, it is crucial to deploy it in the production environment and monitor its
impact on the application. In the context of implementing the solution and verifying its effectiveness,
developers should consider the following:

• Deploy the fix or workaround in the production environment: Using your application’s CI/
CD pipeline, deploy the tested solution to the production environment. This process should
involve automated deployments, configuration updates, or any necessary adjustments to external
dependencies. Ensure that you follow best practices for deployment, such as using blue-green or
canary deployments, to minimize the potential impact on users and facilitate rollback if needed.

• Monitor the impact of the changes on application performance and stability: After deploying
the solution, actively monitor the application’s performance, stability, and relevant metrics
to ensure that the fix or workaround has had the desired effect. Use your monitoring and
observability tools to track any changes in performance, error rates, or other relevant indicators.
This helps you verify that the issue has been resolved without negatively impacting other aspects
of the application.

• Confirm that the issue has been resolved: Based on your monitoring and observability data,
confirm that the deployed solution has effectively addressed the identified issue. Check that
the original symptoms have disappeared and that the application is functioning as expected.

• Ensure no new issues have been introduced: While verifying that the issue has been resolved,
also ensure that no new problems have been introduced because of the fix or workaround.
Continuously monitor the application’s performance, stability, and metrics to identify any
potential side effects or unexpected consequences of the solution. If new issues are detected,
the troubleshooting process may need to be repeated to address these additional problems.

By carefully implementing and verifying the effectiveness of the solution, cloud-native developers can
ensure that the identified issue is resolved and that the application remains stable, performant, and
reliable, providing a seamless user experience and reducing the likelihood of future issues.

Step 5 – Learn from the experience and document

Learning from the experience and documenting it is a vital step. This practice allows developers to
continuously improve their applications and troubleshooting skills, ensuring long-term application
resilience and stability. By learning from past experiences and documenting key insights, teams can
prevent similar issues from recurring and share valuable knowledge with the broader development
community. The details to achieve this goal are as follows:

1. Update the internal documentation and knowledge base with the issue details and resolution:
After resolving the issue, it’s crucial to update your internal documentation and knowledge base

Troubleshooting Multi-Cloud Applications156

to include the details of the problem and its resolution. This helps create a valuable reference for
your team and future developers, enabling them to quickly identify and resolve similar issues.

2. Share the experience and lessons learned with your team and the cloud-native community:
Communicate the issue and its resolution to your team members to help them learn from
your experience. You may also consider sharing your findings with the wider cloud-native
community through blog posts, forums, or conference presentations. This contributes to the
collective knowledge and helps others avoid or address similar issues more effectively.

3. Identify opportunities for improving application design, monitoring, and alerting to
prevent similar issues in the future: Reflect on the issue and its resolution to identify potential
improvements in your application design, monitoring, and alerting practices. Implementing
these improvements can help prevent similar issues from occurring in the future and further
enhance your application’s overall resilience and performance.

By focusing on documentation, knowledge sharing, and continuous improvement, cloud-native
developers can enhance their troubleshooting capabilities and contribute to the success of their
team and the broader cloud-native community. This approach ultimately results in more robust and
maintainable cloud-native applications, benefiting both developers and end-users.

Step 6 – Continuous improvement

By adopting a continuous improvement mindset, developers can proactively address potential issues,
reduce downtime, and optimize the overall development process. The following points are some key
aspects to consider when focusing on continuous improvement:

1. Analyze trends and patterns in incidents to identify areas for improvement in your cloud-
native applications: Regularly review incident data, trends, and patterns to identify recurring
issues or areas of weakness in your applications. Use this information to prioritize areas
for improvement and focus your development efforts on enhancing application resilience,
performance, and maintainability.

2. Implement proactive measures to enhance application resilience, performance, and maintainability:
Based on your analysis of incident data, implement proactive measures to address identified
areas of improvement. This may include refining application architecture, improving error
handling, optimizing resource usage, or updating dependencies.

3. Refine monitoring, alerting, and troubleshooting processes based on experience and feedback:
Continuously review and refine your monitoring, alerting, and troubleshooting processes based
on your team’s experiences and feedback from the cloud-native community. This iterative
approach ensures that your processes remain effective, efficient, and up-to-date with the best
practices in the rapidly evolving cloud-native ecosystem.

By following these steps, we foster a culture of continuous improvement and learning, enabling the
applications to become more resilient, performant, and maintainable over time. This approach ultimately
results in better user experiences and more robust cloud-native applications.

Case studies 157

In this section, we’ve explored how to create an effective troubleshooting process, starting with
identifying the problem and journeying toward continuous improvement.

But our adventure doesn’t stop here. In the next part, we’ll dive into real-world case studies. These
stories will show how cloud-native developers put their troubleshooting skills to work while managing
applications in a multi-cloud environment.

Case studies
Let's now get into some practical examples. Real-world scenarios, or case studies, serve as a valuable
resource to understand the application of concepts we have discussed thus far. They allow us to
examine specific instances where troubleshooting methodologies are employed to resolve issues that
arise in a multi-cloud setup.

In this section, we will walk through a series of case studies. These studies are designed to mirror
typical situations that cloud-native developers might encounter while managing applications across
different cloud platforms. By studying these cases, we will gain insights into how the effective use of
monitoring and observability tools, along with sound troubleshooting strategies, can address complex
problems that surface in a multi-cloud environment.

Each case study will present a problem scenario, discuss the approach taken to diagnose and resolve
the issue, and highlight the key takeaways and best practices. While these case studies are hypothetical,
they are built on common challenges that developers and operations teams frequently face. By the end
of this section, you will have a better understanding of how to apply the principles and techniques of
troubleshooting to real-world situations, thereby enhancing your skills in managing and maintaining
cloud-native applications in a multi-cloud environment.

Let’s get started and see these troubleshooting strategies in action!

Case study 1 – Streamlining microservices communication in
multi-clouds

Consider a leading e-commerce company that uses a microservices-based architecture for its application,
deployed across multiple cloud providers. They started experiencing intermittent downtime in their
application, leading to a significant impact on their business. Each microservice was developed and
managed by different teams, and the application was deployed across AWS and Google Cloud. The
errors were sporadic and seemed to be originating from various services, making it challenging to
isolate the exact source of the problem:

• Approach: The DevOps team decided to employ a service mesh to better manage and monitor the
microservices communication. They chose Istio for its robust capabilities in traffic management,
security, and observability. With Istio, they could gain detailed insights into the application’s
network traffic, identify the problematic services, and manage the communication between
different services effectively.

Troubleshooting Multi-Cloud Applications158

They also integrated their service mesh with their centralized logging and monitoring system
to correlate the telemetry data from Istio with their application logs and metrics. This helped
them trace the errors back to a handful of services that were experiencing high latencies due
to inefficient database queries.

• Resolution: Once the problematic services were identified, the respective development teams
optimized the database queries, significantly reducing the latencies. They also introduced circuit
breakers and retries in their service mesh configuration to manage network-related failures better.

The team then monitored the application closely to ensure that the fixes were effective. Over
the following weeks, the application’s stability improved significantly, and the intermittent
downtimes were eliminated.

• Takeaways:

 � A service mesh can provide valuable insights into microservices communication and help
diagnose complex issues in a multi-cloud, microservices-based application

 � Centralized logging and monitoring are crucial for correlating different data types (logs,
metrics, and traces) and identifying the root cause of the problem

 � The effective management of microservices communication using techniques such as circuit
breakers and retries can significantly improve application stability

Case study 2 – Managing data consistency in a multi-cloud
environment

This case involves a global healthcare provider that leverages a multi-cloud strategy to serve its patients
across different geographical locations. They use a cloud-native approach for developing and deploying
their patient management application, which is used by doctors and patients worldwide.

However, they started facing challenges with data consistency across different cloud platforms. The
issue became prominent when patients moved between countries and their health records were not
synced timely across the clouds. The resulting data inconsistency led to delayed or incorrect medical
care, causing a significant impact on the patient experience and potentially on their health:

• Approach: To resolve this, a cloud-native developer decided to incorporate a global transaction
protocol into the application, ensuring data consistency across all cloud platforms. The developer
also decided to use a distributed database system that could effectively operate and synchronize
across different clouds.

• Resolution: The developer implemented the global transaction protocol, which ensured that all
transactions across different clouds were atomic, meaning they were either fully completed or
fully rolled back, ensuring data consistency. A distributed database system was also introduced,
which helped to maintain the real-time synchronization of patient records across the clouds.

Case studies 159

• Takeaways:

 � The case study highlights the crucial role of data consistency in multi-cloud environments,
especially when dealing with sensitive data such as healthcare records

 � It emphasizes the need for cloud-native developers to account for data-related challenges
when designing applications for multi-cloud deployments

 � The case study shows that utilizing appropriate protocols and distributed database systems
can significantly aid in managing data consistency across various cloud platforms

Case study 3 – Scaling challenges in a multi-cloud environment

This case involves a prominent online education provider that offers a suite of online courses to a global
audience. The platform uses a cloud-native approach for its application development and employs a
multi-cloud strategy to cater to its worldwide user base.

However, with a sudden increase in user traffic due to a global event, EdTech Global started facing
application scaling issues. The platform wasn’t scaling efficiently across all cloud providers, leading
to poor application performance and a subpar user experience:

• Approach: A cloud-native developer at EdTech Global suggested implementing an automatic
scaling solution that could function efficiently across multiple cloud platforms. The developer
proposed to leverage Kubernetes, a container orchestration platform, to manage and scale the
application seamlessly across different clouds.

• Resolution: The developer deployed Kubernetes across the multi-cloud environment and
configured the auto-scaling feature. This change enabled the platform to handle the varying
load efficiently, as resources were automatically scaled up or down based on the demand across
different clouds. As a result, the application performance improved, and users had a consistent
experience, irrespective of the surge in traffic.

• Takeaways:

 � The EdTech Global case study accentuates the importance of robust scalability strategies in
multi-cloud environments.

 � It draws attention to the fact that user traffic can greatly fluctuate and be unpredictable; thus,
cloud-native applications must be designed to scale effortlessly across diverse cloud platforms.

 � The case study reveals that tools such as Kubernetes can be instrumental in achieving this
scalability, thereby guaranteeing a consistent user experience, irrespective of the platform load.

In wrapping up our case study exploration, we’ve seen firsthand how different organizations have
navigated the complexities of troubleshooting in a multi-cloud environment. These real-world
situations underscore the importance of robust monitoring, observability, and the appropriate use
of cloud-native tools.

Troubleshooting Multi-Cloud Applications160

These case studies illustrate not only the challenges but also the successful strategies employed in
addressing them. They highlight the significance of proactive monitoring, the need for efficient
observability tools, and the benefit of implementing service meshes in a multi-cloud setup. Importantly,
each case study reinforces the necessity for teams to continuously learn, adapt, and improve their
applications and processes.

As we move forward in our cloud-native journey, let these case studies serve as a roadmap, offering
practical insights and effective strategies. Remember, every challenge encountered is an opportunity to
learn and enhance our understanding, leading to more resilient and efficient cloud-native applications.
Let us now learn about SRE, a discipline that incorporates aspects of software engineering and applies
them to infrastructure and operations problems.

SRE in multi-cloud environments
Site reliability engineering (SRE) is a key discipline in managing cloud-native applications, especially
in a multi-cloud environment. SRE originated at Google when a team of software engineers was tasked
to make Google’s already highly reliable services even more reliable. The goal was not just to maintain
uptime but to create scalable and highly reliable systems that could support Google’s rapid growth and
the increasing complexity of its services. This team approached operations from a software engineering
perspective, applying principles of computer science and engineering to operational problems. This
methodology was a departure from traditional IT operations, focusing on automating and improving
the reliability of systems through engineering solutions rather than manual intervention.

The principles of SRE

SRE emanates from the challenges of managing large-scale, complex, and dynamic production
systems. At its core, SRE operates on a few foundational principles that set it apart from traditional
IT operations. These principles are as follows:

• Service-level indicators (SLIs): These are the quantitative measures of a service’s reliability
and performance, such as latency or uptime. Based on these SLIs, SREs define service-level
objectives (SLOs) for targeted levels of reliability and performance. For instance, an SLO might
state that a service should successfully handle 99.9% of its requests. Importantly, SLOs are not
meant to drive a service to a perfect reliability score but rather to align it with business needs
and user expectations, balancing reliability with other goals, such as feature velocity.

• Error budgets: In the realm of SRE, the concept of error budgets stands as a sentinel guarding the
equilibrium between reliability and innovation. Think of it as a buffer zone, a carefully defined
margin of allowable mishaps within the grand scheme of your SLOs. Imagine a system with an
SLO of 99.95%. Within this, there’s an error budget of 0.05%, which signifies the permissible risk
threshold. This is a game-changer, as it furnishes engineering teams with a dynamic framework.
It allows them to push the boundaries of innovation while always keeping a vigilant eye on the
acceptable margins of failure. Consider it akin to a trapeze artist performing daring maneuvers

SRE in multi-cloud environments 161

high above the circus floor. The safety net is the error budget, which is essential for pushing the
boundaries and trying out new, bold acts. It encourages calculated risks and fosters a culture of
experimentation, all while maintaining a safety net to prevent catastrophic falls. In the world
of SRE, error budgets are the essence of controlled innovation.

• Reducing toil: In the intricate world of SRE, the term toil carries substantial weight. It doesn’t
merely describe the mundane or repetitive tasks but signifies a relentless pursuit of liberation.
Toil, in this context, encompasses all those manual, repetitive, and often frustrating chores
that consume valuable engineering hours. These are hours that could otherwise be invested in
endeavors that bring lasting value to your systems and organization.

Imagine engineers mired in the monotony of routine server patching or responding to countless
alarms triggered by avoidable incidents. These are hours spent merely keeping the system afloat,
not making it better. SRE aims to systematically root out such toil, replacing it with automated
processes, smart tooling, and efficient workflows. It’s about liberating your skilled engineers
from the shackles of repetitive tasks, enabling them to focus on what truly matters—innovation
and the creation of features that enhance your system’s reliability.

• Shared responsibility: In the SRE model, both developers and SRE engineers are accountable
for the software they produce. This shared ownership ensures that reliability considerations are
integrated throughout the software lifecycle. Developers might take part in on-call rotations,
understanding firsthand the implications of their code in production. Conversely, SRE can
be embedded in development teams, contributing to features and improvements with a
reliability-focused perspective.

• Blameless culture: In the traditional landscape of operations, the aftermath of an incident is
often echoed with finger-pointing and blame. The SRE paradigm, in stark contrast, advocates
for a blameless culture. In the world of SRE, when something goes awry, the spotlight shines
not on identifying the culprit but on understanding what transpired and why.

Imagine a courtroom where the goal isn’t to accuse but to uncover the truth. When an incident
occurs, the primary question becomes, “What went wrong?” rather than “Who did it?” This
subtle shift in perspective fosters a profound change in organizational culture. It promotes
transparency, encourages individuals to come forward with their findings, and empowers the
entire team to learn from the experience.

In a blameless culture, the focus is on continuous improvement. It’s about using incidents
as valuable learning opportunities, not occasions for assigning guilt. This approach not only
accelerates the resolution of issues but also cultivates an environment where everyone strives
for betterment, collaboration, and, ultimately, greater reliability.

Before we move on to the benefits of SRE, let’s view a comparison with DevOps, which was explored in
detail in previous chapters. As the two disciplines may intersect at some point, it becomes important
to draw a line between the two concepts.

Troubleshooting Multi-Cloud Applications162

The benefits of SRE

There are many benefits to implementing SRE in a multi-cloud environment; let’s dive into some of them:

• Improved service reliability: By focusing on SLOs and error budgets, SRE ensures that
services maintain a consistent level of reliability across multiple cloud providers. This consistent
approach to reliability helps teams anticipate and mitigate potential issues specific to each
cloud environment.

• Optimized cost management: Multi-cloud deployments can quickly become cost-intensive
due to differences in pricing models among cloud providers. SRE practices such as reducing toil
and automating operations can optimize resource usage and reduce wastage. Efficient resource
allocation means organizations only pay for what they truly need.

• Enhanced flexibility and avoidance of vendor lock-in: SRE emphasizes automation and
standardization. When combined with IaC, this ensures that configurations and deployments
are consistent across different cloud providers, reducing dependency on a single vendor and
allowing flexibility in choosing the best services from each provider.

• Improved incident management: With the principle of blameless postmortems, SRE promotes a
culture of learning from incidents. When working across multiple clouds, this means a cohesive
and unified approach to incident management, regardless of where the issue originates.

• Efficient scalability: Automated scaling is a core component of SRE. In a multi-cloud environment,
this means that services can automatically scale up or down based on demand across all cloud
platforms, ensuring optimal performance and cost-effectiveness.

• Reduced operational toil: By focusing on eliminating repetitive and manual tasks, SRE can
significantly reduce the operational overhead that often comes with managing services across
different cloud providers. This leads to more time for innovation and improving the system’s
overall health.

• Enhanced security and compliance: Standardized tools, processes, and automated checks ensure
that security measures are consistently applied across all cloud environments. Automated audits,
logging, and monitoring help maintain compliance standards regardless of the cloud provider.

• Faster time-to-market: The use of automation and CI/CD integration, as well as a focus on
delivering features without compromising reliability, means that products or features can be
rolled out quickly across all cloud platforms.

• Continuous improvement: The iterative nature of SRE, especially with blameless postmortems
and error budgets, fosters a culture of continuous improvement. In multi-cloud environments,
this means constantly optimizing deployments, configurations, and operations across all
cloud providers.

Chaos engineering 163

Implementing SRE in multi-cloud settings ensures that organizations can harness the unique benefits
of multiple cloud providers while maintaining consistent, reliable, and efficient operations. Now, it’s
time to understand chaos engineering, increasingly recognized as one of the best practices for cloud-
native applications, especially in multi-cloud environments.

Chaos engineering
Chaos engineering is a discipline in systems engineering where engineers intentionally introduce
failures into systems to ensure they can withstand unexpected disruptions. The process was born out
of the need to improve system resilience in increasingly complex distributed architectures, and its roots
can be traced back to companies, such as Netflix, that created related tools, such as Chaos Monkey
(a tool designed to induce one specific type of failure – it randomly shuts down instances in order to
simulate random server failure), to randomly terminate instances in their production environment to
ensure that engineers continuously reinforce their systems against failures. Here are some key points
about chaos engineering:

• Proactive approach: Instead of waiting for an unplanned disruption, chaos engineering takes
a proactive approach to identify weaknesses before they cause bigger issues.

• Understanding provider-specific failures: Every cloud provider has its unique architecture,
services, and potential points of failure. By conducting chaos engineering experiments on each
platform, teams can gain insights into specific failure modes that might only occur on that
particular platform. For instance, AWS might have different latency issues or service disruptions
compared to Azure or Google Cloud.

• Experiments, not accidents: Despite the term “chaos,” this engineering practice is methodical.
Before introducing any failures, a hypothesis is formed about the system’s behavior. Then,
the failure is introduced, and the system’s actual behavior is observed and compared to the
hypothesis. If the system behaves differently than expected, there’s a resilience gap that needs
to be addressed.

• Safety first: Experiments are designed to be as safe as possible. The blast radius (or the potential
impact area of the experiment) and magnitude (or the severity of the experiment) are carefully
controlled. Automated rollbacks and safeguards are put in place to ensure that things can quickly
return to normal if the experiment goes awry.

• Network complexity: In a multi-cloud setup, there might be inter-cloud communication. Chaos
experiments can simulate network failures, latency, or packet loss between cloud providers.
This allows teams to design and validate failover mechanisms, redundancy, and resiliency in
these cross-cloud communications.

• Continuous learning: The goal isn’t to break things for the sake of breaking them; it’s to learn
from these breaks. By continuously testing systems in this way, teams can uncover and fix
unknown issues, leading to more robust and resilient systems.

Troubleshooting Multi-Cloud Applications164

• Standardization amidst diversification: While each cloud provider has its quirks, there’s also
a need for standardization to ensure smooth operations. Chaos engineering can help validate
whether standard operating procedures (SOPs) are working across different cloud environments.
For example, if you have a standard rollback mechanism, does it work as efficiently in AWS as
it does in Google Cloud?

By deliberately introducing failure into these systems, you can observe whether the rollback
triggers correctly, operates within the expected time frame, or restores services to the desired
state with minimal disruption in both settings.

• Security and compliance: Different cloud providers might have different security postures and
compliance assurances. Chaos engineering can also encompass security experiments (sometimes
called chaos security) to validate whether the security measures, such as encryption and access
controls, remain consistent and effective across providers.

• Tools and platforms: Over time, a plethora of tools and platforms have emerged to assist with
chaos engineering. Examples include Netflix’s Simian Army (which includes Chaos Monkey),
Gremlin, Litmus, and many more.

Chaos engineering is a four-step process that strengthens systems by deliberately injecting controlled
chaos and observing how they handle it. Let’s have a look at the following diagram and explore the
lifecycle of chaos engineering:

Figure 7.8 – The lifecycle of chaos engineering

The steps are as follows:

1. Define the steady state: Establish normal operating conditions for the system.

2. Introduce chaos: Simulate real-world failures such as network delays or disk outages.

3. Verify steady state: Monitor how the system handles the disruptions.

4. Rollback: Restore the system to its original state.

Summary 165

By iterating through these steps, engineers can identify and fix weak points, making systems more
resilient to real-world chaos.

In essence, chaos engineering in a multi-cloud environment doesn’t just validate the application’s resilience;
it validates the entire operational strategy, from networking to data replication, security, monitoring,
and even cost management. By introducing failures intentionally in a controlled environment, teams
can proactively address the complex challenges that come with managing multiple cloud providers.

Summary
In conclusion, troubleshooting cloud-native applications in a multi-cloud environment can be a complex
task, but with the right strategies and tools, it is certainly manageable. As a cloud-native developer,
it’s crucial to understand that issues in such a dynamic environment are inevitable. However, the
key to effective troubleshooting lies in robust monitoring, comprehensive observability, and efficient
debugging tools, all working in tandem with a well-planned troubleshooting workflow.

This chapter has delved into the intricacies of the multi-cloud environment and has shown how
to navigate its complexities when things go awry. We’ve covered the ripple effects of application
malfunctioning, the unique challenges posed by multi-cloud setups, and a range of strategies for
effective troubleshooting. Real-world scenarios were discussed to exemplify these principles in action,
and various tools and practices were highlighted.

The goal is not merely to solve the problem at hand but to learn from each issue and iteratively improve
the resilience and reliability of your applications. As the final takeaway, remember the importance of
continuous improvement. Every troubleshooting incident is an opportunity to refine your applications
and your approach, enhancing the overall quality and reliability.

As we progress further into the cloud-native and multi-cloud era, the demand for effective troubleshooting
skills will only grow. Therefore, developing these skills and staying abreast of best practices is not just
beneficial; they’re essential for any developer aiming to excel in this evolving landscape.

In the upcoming chapter, we’ll explore real-world examples of multi-cloud and cloud-native success
stories and best practices. Join us in the next chapter!

Part 4:
Best Practices, Case Studies,

and Future Trends for
 Multi-Cloud and Cloud-Native

This final part of the book brings together real-world success stories, best practices, and a forward-
looking perspective on multi-cloud and cloud-native applications. It showcases case studies of
companies that have effectively implemented these technologies and distills the lessons learned and
recommendations for future projects. The chapters provide hands-on guidance for planning, designing,
and optimizing cloud-native applications in a multi-cloud environment. Lastly, it offers a glimpse into
the future, discussing emerging technologies and trends and the evolving role of the community and
community in shaping the next wave of cloud computing.

This part has the following chapters:

• Chapter 8, Learning from Pioneers and Case Studies

• Chapter 9, Bringing Your Cloud-Native Application to Life

• Chapter 10, Future-Proofing Your Cloud Computing Skills

8

Learning from Pioneers and
Case Studies

Our journey so far has been a mixture of multiple interesting topics around cloud-native development
and multi-cloud. Now, it is time to embark on a journey to conquer the highest peaks in the world.
You’ve done your research, gathered your gear, and trained relentlessly.

But this journey doesn’t have to be a solitary expedition. Instead, we can draw from the experiences
of pioneers who’ve navigated these paths before us.

Welcome to Chapter 8, Learning from Pioneers and Case Studies, where we’re about to explore real-world
success stories in the realm of multi-cloud and cloud-native applications. Just as those mountaineers
shared their tales of ascent and descent, we’re here to unveil stories of organizations that have successfully
harnessed the power of multi-cloud and cloud-native technologies.

Why are these stories important? They offer more than just inspiration; they provide actionable insights.
They represent a blueprint for success in a realm where the landscape constantly shifts, much like
the mountainscape. These stories reveal the best practices, the strategies that work, and the pitfalls
to avoid. They equip you, the cloud-native developer, with a unique perspective that can distinguish
between a successful ascent and a strenuous struggle.

In this chapter, we’ll delve deep into the annals of real-world case studies, dissecting the journeys of
companies that have seamlessly scaled their applications, optimized costs with precision, and built
unwavering resilience into their systems. We’ll extract the essence of their success, distilling it into
actionable advice you can implement in your projects.

Learning from Pioneers and Case Studies170

But we won’t stop at just these stories; we’ll also explore the best practices that underpin the successes.
From architectural considerations and deployment strategies to effective management and monitoring,
we’ll provide you with a comprehensive toolkit for your cloud-native toolkit. The following topics will
be covered in this chapter:

• Real-world case studies

• Deployment strategies and best practices

• Lessons learned and recommendations

Real-world case studies
The case studies in this section will offer a glimpse into how companies from diverse industries
harnessed the power of multi-cloud and cloud-native technologies to overcome unique challenges,
achieve remarkable feats, and set new standards for innovation.

Each case study is a testament to the transformative potential of these approaches. We delve into the
challenges these organizations faced, the ingenious strategies they employed, the tools and practices
that powered their solutions, and the profound cultural shifts that paved the way for success. Let’s
dive into the case studies one by one.

Capital One – accelerating decision-making applications with
Kubernetes

Capital One Financial Corporation is an American bank holding company that specializes in credit
cards, auto loans, banking, and savings accounts, primarily operating within the United States. This
case study demonstrates how Capital One effectively leveraged cloud-native technologies to address
and surmount its challenges:

• Challenges:

 � Complex application portfolio: Capital One needed to develop a provisioning platform
for applications with varying degrees of complexity, from real-time streaming to big data
decision-making and machine learning. One critical application processed millions of daily
transactions, including vital functions such as fraud detection and credit decisions.

 � Resilience and speed: Ensuring the resilience of these applications, particularly those involved
in mission-critical tasks while maintaining high-speed performance, was a paramount challenge.

 � Cluster rehydration: The team faced the challenge of achieving the full rehydration of the
cluster from base Amazon Machine Images (AMIs), a process that is essential for maintaining
the health and reliability of the applications.

Real-world case studies 171

• Strategies:

 � Strategic adoption of Kubernetes: Capital One strategically adopted Kubernetes as a
foundational technology for their application provisioning platform

 � Kubernetes as an operating system: Kubernetes was utilized as a substrate or operating
system for their applications, providing a unified foundation for various workloads

 � Degree of affinity: The team integrated Kubernetes into their product development process,
emphasizing its role in their technology stack

• Tools and practices:

 � Kubernetes: The adoption of Kubernetes as a container orchestration platform was pivotal
in addressing the challenges

 � Automation: Kubernetes automation and declarative configuration played a crucial role in
streamlining processes

 � Provisioning platform: The company developed a provisioning platform for managing
applications and clusters

• Cultural shift:

 � Productivity multiplier: Kubernetes became a significant productivity multiplier for Capital
One, leading to a shift in how they approached application development and deployment

 � Cost-efficiency: The adoption of Kubernetes resulted in cost-efficiency, significantly reducing
operational expenses

 � Agility: The time-to-market for new applications and features improved drastically

• Lessons learned:

 � Productivity impact: Kubernetes had a profound impact on productivity and cost optimization,
emphasizing its strategic importance

 � Cost reduction: Running the platform without Kubernetes would have substantially increased
costs, highlighting the cost-saving potential of container orchestration

 � Time-to-market: Kubernetes significantly reduced the time required to deploy new applications
and updates, enhancing agility

 � Automation benefits: Automation, as facilitated by Kubernetes, streamlined critical processes,
making tasks more efficient

 � Operational enhancements: The automation of the rehydration/cluster-rebuild process
resulted in faster and more reliable operations

Learning from Pioneers and Case Studies172

Note:
For more information, please check https://www.cncf.io/case-studies/capitalone/.

Ygrene – using cloud-native tech to bring security and scalability
to the finance industry

Ygrene Energy Fund, Inc. is a financing corporation that provides property-assessed clean energy
financing to residential and commercial properties for energy efficiency projects. This case study
demonstrates how Ygrene effectively leveraged cloud-native technologies to address and surmount
their challenges:

• Challenges:

 � Data aggregation and processing: Ygrene, a property-assessed clean energy (PACE)
financing company, faced challenges related to aggregating data from various sources and
processing it efficiently

 � Scalability limits: They were using large servers but reached the vertical scaling limit,
leading to system instability and performance issues, especially during real-time background
data processing

 � Security in finance: As a finance company, Ygrene had to ensure the security of its applications
and data

• Strategies:

 � Adoption of Kubernetes: Ygrene transitioned from their existing Engine Yard platform
and Amazon Elastic Beanstalk to Kubernetes to achieve vertical scalability and distribute
workloads effectively

 � Build-time controls: The company implemented Notary for build-time controls to establish
trust in Docker images, particularly those using third-party dependencies

 � Comprehensive observability: Fluentd was employed for observing all parts of their
technology stack, enhancing monitoring capabilities

 � Amazon EC2 Spot: Ygrene’s setup ran on Amazon EC2 Spot Instances for cost optimization

• Tools and practices:

 � Kubernetes: Kubernetes played a pivotal role in enabling vertical scaling and
workload distribution

 � Notary: Notary was used for ensuring trust and control in Docker image usage

 � Fluentd: Fluentd provided comprehensive observability across the technology stack

 � Amazon EC2 Spot: Leveraging EC2 Spot Instances contributed to significant cost savings

Real-world case studies 173

• Cultural shift:

 � Deployment speed: Kubernetes drastically improved deployment times from hours to
minutes, enabling more frequent and agile deployments

 � Zero downtime: Ygrene could now deploy, ship code, and migrate databases without
downtime, enhancing overall system availability

• Lessons learned:

 � Deployment efficiency: Kubernetes significantly reduced deployment times and allowed
for more frequent code releases

 � Operational resilience: The shift to Kubernetes enhanced the system’s stability and ability
to handle real-time data processing

 � Cost optimization: Running Kubernetes clusters on Amazon EC2 Spot Instances resulted
in substantial cost reductions

 � Security and trust: Implementing Notary and other controls improved the security and
trustworthiness of their Docker images

 � Agility: Ygrene gained the flexibility to deploy code and make database migrations without
system downtime, increasing overall agility

Note:
For more information, please check https://www.cncf.io/case-studies/ygrene/.

T-Mobile – scaling up for peak with Kubernetes

In the ever-evolving landscape of telecommunication, agility and scalability are essential. T-Mobile,
one of the largest mobile companies in the United States, faced challenges originating from traditional
monolithic applications. The company's slow development cycles and rigid architectures were insufficient
to meet surging market needs. The T-Mobile case study is an excellent showcase of adopting Kubernetes
to improve application development and infrastructure management:

• Challenges:

 � Slow delivery: T-Mobile was suffering from slow delivery rates. In 2015, it took T-Mobile
seven months to deploy new code updates, which is a very slow rate for responding promptly
to increasing market demand.

 � PaaS limitations: T-Mobile successfully improved deployment times thanks to Pivotal
Cloud Foundation, a multi-cloud PaaS running on top of Kubernetes. However, the Docker
containers didn’t run smoothly, and new solutions were required.

Learning from Pioneers and Case Studies174

 � Availability and reliability: As a major telecommunication provider, T-Mobile has to ensure
uninterrupted service, especially during peak times.

• Strategies:

 � Adopting Kubernetes: T-Mobile initially developed their own open source Kubernetes
platform. However, it was after adopting Pivotal Cloud Foundation’s Pivotal Kubernetes
Services (PKSs) that efficiency and scalability became more tangible.

 � Phased launch: T-Mobile adopted a phased migration to the cloud, starting with a small
portion of the production traffic in 2018 being balanced to Kubernetes and gradually scaling
to intake more traffic.

• Tools and practices:

 � Kubernetes: The cornerstone of T-Mobile’s cloud-native solution was based on Kubernetes,
which was used to improve container orchestration and enable increased scaling and deployment.

 � Pivotal Cloud Foundation (PCF): Adopted for improved and agile development cycles and
shorter deployment times.

 � Pivotal Kubernetes Service (PKS): Kubernetes cluster technologies, such as PKS, were
necessary for T-Mobile to automate multi-cluster operations. It plays an important role
in centralizing in-cluster services for monitoring, logging, networking, and other services
needed for cloud-native applications.

• Cultural shift: Beyond the technical advantages brought by Kubernetes, T-Mobile had to adapt
its organizational paradigm to host agile and innovative developers, fostering rapid development
cycles and deployments.

• Lessons learned:

 � High availability: Thanks to the adoption of Kubernetes and PKS, T-Mobile was able to
automatically manage the scaling of services, especially during peak times, ensuring high
availability and reliability of services

 � Agile deployment: The role of modern development cycles that came hand-in-hand with
the new technologies acquired by T-Mobile incentivized agile development practices that
were able to cope with rapidly changing market needs

Note:
For more information, please check https://www.cncf.io/case-studies/t-mobile/.

Real-world case studies 175

Uber – cloud-native transformation for agility

Uber Technologies, Inc. provides ride-hailing services, food delivery, and freight transport. It is
headquartered in San Francisco. The company operates across approximately 72 countries and 10,500
cities worldwide. This case study demonstrates how Uber effectively leveraged cloud-native technologies
to address and surmount their challenges:

• Challenges:

 � Scale and complexity: Uber was dealing with the monitoring of around 4,000 proprietary
microservices and a growing number of open source systems. The existing monitoring tools,
Graphite and Nagios, were proving inadequate for handling this scale and complexity.

 � Maintenance challenges: Teams had to use pre-packaged Graphite monitoring software and
create Nagios scripts to monitor metrics from these packages. This approach was challenging
to maintain as the number of services and metrics increased.

• Strategies:

 � Adoption of Prometheus: Uber chose Prometheus as its monitoring solution because it
aligned well with the preferences and requirements of Uber engineers

 � Open sourcing M3 platform: Uber’s technical team developed and open sourced the M3
platform. This platform served as a scalable and configurable store for Prometheus metrics

 � Scalability and global persistence: M3 was implemented to accommodate the massive
scale at Uber, handling billions of time series and millions of metrics per second, helping
them to persist globally

• Tools and practices:

 � Prometheus: Uber adopted Prometheus as its primary monitoring tool

 � M3 platform: The open source M3 platform was utilized as a scalable metric store

 � Client libraries: Engineers used Prometheus client libraries to facilitate metric collection
and monitoring

• Cultural shift:

 � Operational efficiency: The adoption of Prometheus and M3 significantly improved
operational efficiency. Setting up monitoring systems became faster and less burdensome
for operational maintenance.

• Lessons learned:

 � Cost efficiency: The use of Prometheus and M3 resulted in substantial cost savings, making
metric ingestion significantly more cost-effective

Learning from Pioneers and Case Studies176

 � Rapid deployment: Monitoring systems for Uber’s Advanced Technologies Group were
deployed much faster than before, enhancing agility

 � Reduced maintenance: The team experienced a drastic reduction in operational maintenance
tasks, leading to improved overall efficiency and reduced alert fatigue

Note:
For more information, please check https://www.cncf.io/case-studies/uber/

Now that we have witnessed some real-world success stories, it’s time to understand what deployment
strategies is and why is it important.

 Deployment strategies and best practices
In the dynamic world of cloud-native application development, where agility, scalability, and resilience
are paramount, embracing strategies and best practices is not just a choice but a necessity. This section
delves deep into the time-tested strategies, approaches, and principles that will empower you to craft
robust, efficient, and adaptable applications tailored for the multi-cloud era. Let’s learn about the
deployment strategies in the multi-cloud environment.

Deployment strategies

Deployment patterns in cloud-native application development play a pivotal role in ensuring the
reliability, scalability, and maintainability of your software. These patterns dictate how your application
is rolled out, updated, and managed in a dynamic, often multi-cloud, environment. In this section,
we’ll delve into the intricacies of some deployment patterns, providing you with a comprehensive
understanding of when and how to use them effectively.

Canary deployments

Canary deployments involve releasing a new version of your application to a subset of your user base
while the majority of users still interact with the old version. This subset of users is referred to as the
“canary group.” The idea is to monitor and gather real-world data on how the new version performs
in a controlled environment. Figure 8.1 illustrates a canary deployment, a strategic method employed
to reduce the risk associated with deploying new software versions:

 Deployment strategies and best practices 177

Figure 8.1 – Canary deployment

In this approach, instead of updating the entire system at once, a small percentage of the traffic—
in this case, 10%—is directed to the new version of the application. The remaining 90% of traffic
continues to be served by the old version. As we explored in the case studies, this is the same spirit that
motivated T-Mobile, where they began by balancing some of the network with the new architecture
before implementing full deployment. This technique allows real-world exposure to the new release
with minimal impact on the overall user base. Monitoring tools are used to carefully analyze the
performance and stability of the new version based on the feedback from this subset of traffic. If no
issues are detected, the new version can gradually take on more traffic until it eventually serves all
users. This incremental process provides a safety net, enabling quick rollback if any problems arise
and ensuring a smoother, more controlled deployment:

• Use cases: Canary deployments are particularly valuable in the following instances:

 � Introducing major updates or changes to your application

 � Ensuring the new version performs well under real-world usage

 � Minimizing the risk of widespread issues by catching problems early

 � Gradually rolling out new features or changes to a subset of users for feedback

• Implementation: Implementing canary deployments often involves the following:

 � Diverting a small portion of incoming traffic or users to the new version

 � Monitoring key performance metrics, error rates, and user feedback for both versions

 � Gradually increasing the canary group’s size if the new version proves stable

 � A potential rollback if issues arise or further deployment to the entire user base if successful

Learning from Pioneers and Case Studies178

Blue-green deployments

Blue-green deployments maintain two identical environments: one as the “blue” production environment
(the current live version) and the other as the “green” staging environment (the new version). Traffic
is initially directed to the blue environment, but when a new release is ready, traffic switches to the
green environment. Figure 8.2 showcases a blue-green deployment strategy, an approach designed to
reduce downtime and risk by running two identical production environments, only one of which is
live at any given time:

Figure 8.2 – Blue-green deployment

In this model, “blue” represents the current, active version of the application, receiving all user traffic
via a load balancer. When a new version of the application, “green,” is ready to be deployed, it’s carried
out in a parallel environment to Blue. After thorough testing and once Green is verified to be stable,
the load balancer seamlessly shifts all traffic from Blue to Green. This switch can be instantaneous
and allows for an immediate fallback to the Blue environment if any issues arise with Green, ensuring
uninterrupted service and providing a robust mechanism for updates and rollbacks:

• Use cases: Blue-green deployments are suitable in the following instances:

 � Minimizing downtime is critical during updates

 � Ensuring the ability to rollback quickly in case of issues

 � Gradually transitioning users to a new version for a seamless experience

• Implementation: Implementing blue-green deployments often occurs in the following instances:

 � Setting up identical blue and green environments

 � Directing traffic to the blue environment initially

 � Deploying the new version to the green environment

 Deployment strategies and best practices 179

 � Switching traffic from blue to green when ready

 � Monitoring issues and rolling back to blue if necessary

Rolling deployments

Rolling deployments update a running application incrementally by replacing instances one at a
time. This process maintains continuous availability while introducing new features or fixes gradually.
Figure 8.3 depicts the process of a rolling deployment, a technique that facilitates the gradual replacement
of an older version of an application with a new release:

Figure 8.3 – Rolling deployment

During this procedure, the update occurs incrementally, with each instance of the application being
updated one after the other. This systematic approach ensures that there is no downtime, as only a
subset of instances is taken offline for the update at any given time. As each instance is updated, it
rejoins the pool of active servers, serving the new version of the application. This method allows
for a smooth transition and provides the ability to monitor the deployment for any issues, thereby
minimizing risk and ensuring service continuity for end users:

• Use cases: Rolling deployments are useful in the following instances:

 � Ensuring high availability and minimal disruption is critical

 � Incrementally releasing updates to a running application

 � Gradually scaling up or down based on demand

• Implementation: Implementing rolling deployments often occurs in the following instances:

 � Dividing your application instances into smaller groups

 � Replacing instances in one group at a time with new versions

Learning from Pioneers and Case Studies180

 � Monitoring performance and health after each replacement

 � Gradually moving through all groups until the update is complete

 � Rolling back to previous versions if issues arise

Shadow deployments

Shadow deployments duplicate incoming requests to a new version of the application without serving
them to users. The primary goal is to monitor and test the new version’s behavior under real-world
conditions without impacting users. Figure 8.4 illustrates the concept of a shadow deployment, a
strategy employed to test a new version of an application in the live production environment without
impacting end users:

Figure 8.4 – Shadow deployment

In this deployment, when users access the existing API (version v1), their requests are handled by
the current backend as usual, ensuring that the user experience remains unchanged. Simultaneously,
these requests are duplicated and routed to the newer API version (v1.1), which operates in parallel.
This shadow version processes the traffic in real time but does not affect the actual response returned
to the user. This approach allows developers to observe the behavior of the new version under actual
load conditions, verifying its performance and stability before fully transitioning to it:

• Use cases: Shadow deployments are beneficial in the following instances:

 � Introducing significant changes or updates to an application

 � Validating the new version’s performance, stability, and compatibility

 � Ensuring a smooth transition to a new version without affecting user experience

Lessons learned and recommendations 181

• Implementation: Implementing shadow deployments often occurs in the following instances:

 � Creating a mirrored environment for the new version

 � Diverting a portion of incoming traffic to the shadow environment

 � Monitoring and analyzing how the new version behaves under real usage

 � Comparing the metrics and outcomes between the shadow and production environments

 � Gradually transitioning users to the new version based on performance analysis

These deployment strategies empower cloud-native developers to update applications efficiently,
manage risks, and maintain high availability. When combined with robust rollback strategies, they
ensure that updates can be safely and promptly reversed in case of deployment failures or unexpected
issues, minimizing disruptions to users and businesses.

In the next section, we will see some of the lessons learned from real-world experiences in cloud-native
development and recommendations.

Lessons learned and recommendations
This section distills valuable insights from real-world experiences in cloud-native development and
management. It delves into the challenges faced, the strategies employed, and the outcomes achieved by
organizations and individuals working in the cloud-native space. By examining these lessons, readers
gain a deeper understanding of best practices and the pitfalls to avoid when embarking on cloud-native
projects. Moreover, this section provides actionable recommendations for future initiatives, covering
critical aspects such as security, compliance, automation, scalability, budgeting, and innovation. It
serves as a comprehensive guide for anyone looking to make the most of cloud-native technologies
and ensure the success of their projects.

Lessons learned

This section aims to summarize the key takeaways, highlight the common challenges and pitfalls
encountered, and offer practical advice based on these lessons. Drawing from case studies and
industry expertise, it provides a rich resource for individuals and organizations embarking on similar
cloud-native journeys:

• Embrace cloud-native principles: Embracing cloud-native principles, such as microservices
and containerization, has been shown to significantly enhance scalability and resilience in
case studies. However, it’s essential to approach these transitions methodically, as they can be
challenging to implement effectively.

Learning from Pioneers and Case Studies182

• Plan for failure: By recognizing that the cloud is not infallible, organizations have learned
the importance of planning for failure. This includes implementing redundancy and disaster
recovery strategies, as well as conducting thorough testing to minimize downtime and data
loss in the event of failures or outages.

• Security is paramount: The case studies underscore the critical importance of integrating
security from the outset of cloud-native projects. Cloud-native applications require robust
security measures and continuous monitoring to defend against evolving threats in the dynamic
cloud environment.

• Cost optimization is continuous: Achieving cost optimization in cloud-native projects is an
ongoing process. It entails the continuous monitoring of resource usage, adjusting resource
allocations as needed, and adopting financial operations (FinOps) practices to prevent
overspending and ensure efficient resource utilization.

• Collaboration is key: Successful cloud-native projects have highlighted the significance of cross-
team collaboration. Breaking down organizational silos and fostering collaborative DevOps
practices are essential for driving innovation and efficiency, ultimately leading to project success.
Such collaboration leads to streamlined workflows, improved problem-solving, and faster
delivery of products to market. This unity not only boosts product quality and reliability but
also cultivates a resilient and adaptive organizational culture, providing a significant competitive
advantage in a rapidly evolving digital landscape.

Recommendations for future projects

By drawing on the insights and lessons learned in the previous section, this section offers a roadmap
for success in a holistic cloud-native development and management. It covers essential areas such as
security, compliance, automation, scalability, budgeting, innovation, and more. By embracing these
recommendations, individuals and organizations can navigate the complex landscape of cloud-native
technologies with confidence, ensuring their projects are not only efficient but also positioned for
long-term growth and adaptability:

• Start with a cloud strategy: Developing a comprehensive cloud strategy is the cornerstone of
a successful cloud adoption journey. It begins with a thorough assessment of an organization’s
business goals, ensuring that the cloud strategy aligns perfectly with these objectives. This
alignment is critical as it lays the foundation for demonstrating how cloud technology can
empower and support broader business goals, whether they involve cost reduction, scalability,
global expansion, or customer experience enhancement. The next pivotal step is crafting a cloud
migration roadmap, a detailed plan that outlines the migration process’s phases, timelines,
and expected outcomes. Prioritizing workloads based on their business value and complexity
is essential.

• Prioritize security and compliance: Prioritizing security and compliance is paramount. It’s
essential to weave these critical elements into the very fabric of your project, permeating every

Lessons learned and recommendations 183

stage of its development and operation. Firstly, robust identity and access management (IAM)
practices should be adopted to ensure that only authorized personnel can access resources
and data. This not only safeguards sensitive information but also prevents potential breaches.
Encryption, both at rest and in transit, is another foundational layer of security. By encrypting
data, you protect them from unauthorized access, even if a breach were to occur. Additionally,
compliance with industry standards and regulations should be diligently observed. Adherence to
these standards not only ensures that your cloud-native project operates within legal boundaries
but also aligns with best practices in safeguarding data and maintaining trust with stakeholders.
Overall, the fusion of these security and compliance measures throughout the project lifecycle
establishes a resilient and trustworthy cloud-native environment.

• Embracing automation, orchestration, and compliance as code: Adopting robust automation
and orchestration practices is imperative. By investing in automation and orchestration tools,
organizations can streamline the deployment, scaling, and day-to-day management of cloud-
native applications. This not only accelerates processes but also minimizes manual labor,
reducing the risk of errors and enhancing overall operational efficiency.

Furthermore, to ensure security and regulatory compliance in cloud-native environments, it’s
crucial to embrace “compliance-as-code” practices. This involves integrating compliance checks
and policy enforcement seamlessly within your continuous integration/continuous deployment
(CI/CD) pipelines. By automating compliance checks, organizations can proactively identify
and rectify compliance issues, thus strengthening their overall security position and ensuring
adherence to industry-specific regulations and standards. This holistic approach to cloud-native
development combines the benefits of automation, orchestration, and compliance, fostering a
secure, efficient, and agile environment for application development and deployment.

• Enhancing application performance and adaptability: To optimize your cloud-native applications,
it’s imperative to focus on two key aspects: monitoring and scalability. First, establish robust
monitoring and observability practices by selecting appropriate tools that offer deep insights
into application performance and user experience. This proactive approach enables your team
to identify and resolve issues swiftly, ensuring the seamless operation of your systems.

Simultaneously, design your applications with scalability and elasticity at the forefront. By doing
so, you prepare your infrastructure to adapt to fluctuating workloads and dynamic conditions.
Scalability ensures that your applications can efficiently handle increased demand, while
elasticity guarantees performance consistency regardless of varying circumstances. Together,
these strategies enhance your application’s performance and adaptability, contributing to a
resilient and high-performing cloud-native environment.

• Data strategy: A robust data strategy is essential for cloud-native applications. It encompasses
various critical elements, such as data governance, storage, and analytics. The strategy should
be meticulously designed to make data accessible to those who need them while upholding
stringent security measures and compliance with relevant regulations. By doing so, organizations
can harness the power of their data to drive insights, innovation, and informed decision-

Learning from Pioneers and Case Studies184

making in a secure and compliant manner, ultimately contributing to the success of their
cloud-native projects.

• Financial efficiency and innovation: Achieving the delicate balance between financial efficiency
and innovation is a hallmark of successful cloud-native projects. By implementing FinOps
practices, organizations can gain better control over their cloud expenditure through regular cost
analysis and optimization efforts while setting transparent budgets. Simultaneously, fostering
a culture of experimentation and innovation encourages teams to explore novel technologies
and methodologies, driving continuous improvement in their cloud-native applications while
maintaining cost-effectiveness.

• Culture of continuous learning and knowledge sharing: In the rapidly evolving landscape of
cloud-native technologies, it is paramount to instill a culture of continuous learning within
your organization. Encourage your team members to stay abreast of the latest industry trends
and best practices by regularly updating their skill sets. Consider investing in certifications
and training programs to build and certify their expertise, ensuring they remain well versed
in cutting-edge cloud-native advancements. To facilitate seamless knowledge transfer and
ensure continuity, prioritize documentation and knowledge sharing. Documenting processes,
architectures, and best practices serves as a valuable resource for your team, enabling them to
reference and replicate successful approaches. Promote a culture of knowledge sharing, where
team members freely exchange insights, challenges, and solutions. By doing so, you not only
harness the collective intelligence of your organization but also foster collaborative learning,
which is fundamental in navigating the ever-changing cloud-native landscape effectively.

So far, we’ve explored several recommendations to guide you on your cloud-native journey. As we come
to the conclusion of this chapter, let’s take a moment to summarize the key takeaways and reinforce
the knowledge we’ve acquired.

Summary
In this chapter, we took a deep dive into real-world case studies, meticulously dissecting the journeys of
successful companies. These stories reveal how these organizations seamlessly scaled their applications,
optimized costs with surgical precision, and fortified their systems with unwavering resilience. We
also unveiled the best practices that underpin these remarkable achievements. From architectural
insights and deployment strategies to effective management and vigilant monitoring, we provide
you with a comprehensive toolkit for your cloud-native endeavors. This chapter covers critical topics,
including real-world case studies, best practices for multi-cloud and cloud-native approaches, and
the invaluable lessons learned.

As we move forward into the next chapter, we will transition from theory to practical implementation.
You will learn how to design, deploy, and operate cloud-native applications across different cloud
environments, putting the knowledge and best practices from the previous chapters into action.

9
Bringing Your Cloud-Native

Application to Life

From the previous chapters, you’ve gained a strong foundation in the principles and concepts of
building modern, scalable applications. Now, it’s time to take your skills to the next level by delving
into the complexities and opportunities presented by multi-cloud architecture.

In this chapter, we’ll explore holistically how to plan, design, and deploy cloud-native applications that
seamlessly operate across multiple cloud service providers. You’ll discover strategies for ensuring resilience,
optimizing performance, and managing costs effectively in this dynamic and demanding environment.

This chapter can be your hands-on guide, providing practical insights and actionable steps to empower
you as a cloud-native developer in the era of multi-cloud computing. Whether you’re a beginner
looking to grasp the fundamentals or an intermediate practitioner aiming to refine your skills, this
chapter is designed to provide valuable insights and practical guidance. Our goal is to equip you with
the knowledge and expertise needed to succeed.

The following topics will be covered in this chapter:

• Project planning

• Designing cloud-native applications for multi-cloud

• Security best practices for deployment

• Troubleshooting and optimization

• Hands-on exercise

Project planning
For any project, project planning is a fundamental phase in the life cycle of any successful endeavor,
in any development. This phase involves a series of crucial steps that lay the foundation for smooth
and efficient project execution. Each step is vital for ensuring that your multi-cloud project is well-
prepared, well-managed, and well-executed.

Bringing Your Cloud-Native Application to Life186

Throughout this book, we have explored areas of vital interest to get you ready for the multi-cloud
ecosystem. The perspectives provided in each of the sections provide a unique consideration to
remember when designing a cloud-native application. When you are planning for a cloud-native
project, you should have a global view on multiple fields of the multi-cloud realm, compiled in the
following figure (Figure 9.1), and evaluate their impact on your cloud-native application. Depending
on the business project, some areas may require more attention than others, but you should always
consider all areas of multi-cloud, even if they initially seem secondary to your specific project.

Figure 9.1 – Typical multi-cloud ecosystem

It is important to remember that understanding the intricacies of project planning is essential for
achieving your goals effectively and efficiently. Let’s look into the key aspects of project planning:

1. Define clear project objectives and requirements: At the outset of any project, it’s essential to
have a crystal-clear understanding of what you want to achieve. Begin by defining your project’s
objectives, which should be specific, measurable, achievable, relevant, and time-bound
(SMART). These objectives serve as your guiding star throughout the project and help you
stay focused on what matters most. Additionally, outline the project’s requirements, including
functional and non-functional aspects. This step ensures that everyone involved understands
the project’s goals and scope.

Project planning 187

 � Example: Imagine a healthcare organization aiming to implement a multi-cloud solution to
improve patient data accessibility and reduce administrative overhead. The specific project
objective is to create a secure patient portal that allows users to access their medical records
and schedule appointments online. A key requirement is that the patient portal must comply
with healthcare regulations such as HIPAA to ensure patient data privacy.

2. Identify key stakeholders and establish communication channels: Typically, any live project
requires multiple stakeholders, each with their interests and expectations. Identify who these key
stakeholders are, whether they are team members, management, clients, or external partners.
Establish effective communication channels to facilitate collaboration and ensure everyone is
on the same page. Regular meetings, reports, and clear lines of communication are essential
to address concerns, provide updates, and make informed decisions.

 � Example: Key stakeholders in the healthcare multi-cloud project include the IT department,
medical staff, patients, and cloud service providers (e.g., AWS, Azure, Google Cloud). Effective
communication channels are established through regular meetings, emails, and a secure
online portal for patients to communicate with their healthcare providers.

3. Create a multi-cloud strategy: In a multi-cloud environment, choosing the right cloud service
providers (CSPs) is crucial and challenging as well. Start by assessing your project’s specific
needs, such as performance requirements, compliance considerations, and geographical reach.
Based on these factors, select the CSPs that align best with your goals. Your multi-cloud strategy
should outline how you plan to leverage the strengths of each CSP while managing any potential
complexities. Consider factors such as data integration, security, and cost management in
your strategy.

 � Example: The multi-cloud strategy involves using AWS for scalable data storage and analytics,
Azure for hosting the patient portal application, and Google Cloud for machine learning-
based predictive analytics on patient health data. The strategy emphasizes data encryption,
access controls, and regular security audits to ensure compliance with HIPAA regulations.

4. Set a budget and allocate resources: Managing costs is a fundamental aspect. Define a clear
budget that includes not only the expected cloud costs but also other resources such as personnel
and tools. Allocate resources wisely to ensure that you have the necessary skills and technology
at your disposal. Keep in mind that effective resource allocation can prevent overspending and
project delays.

 � Example: A budget of $2 million is allocated for the healthcare multi-cloud project. Resources
include cloud infrastructure costs ($1 million), salaries for a team of cloud architects,
developers, DevOps engineers, project managers, and security experts ($800,000), and
cybersecurity tools and training ($200,000). The allocation ensures that the project has the
necessary financial and human resources to meet its objectives.

Bringing Your Cloud-Native Application to Life188

5. Risk assessment and mitigation: Identifying potential risks and developing strategies to mitigate
them is crucial for any cloud transformation project’s success. Conduct a comprehensive risk
assessment specific to your multi-cloud project. Anticipate challenges related to security,
compliance, technology integration, and external dependencies. Once identified, outline
mitigation plans to address these risks effectively. Regularly revisit and update the risk assessment
throughout the project life cycle to adapt to changing circumstances.

 � Example: For the example of healthcare services adopting a multi-cloud solution, potential
risks could include, for example, data breaches or non-compliance with healthcare regulations.
Mitigation strategies may involve implementing robust encryption protocols, regular
compliance audits, and establishing contingency plans for switching cloud providers if
necessary. Continuous monitoring and adaptation of mitigation plans will help maintain
project resilience.

6. Establish project timelines and milestones: It is key to develop a detailed project timeline
that outlines when specific tasks and milestones should be completed, where these milestones
serve as checkpoints to track progress and ensure that the project stays on course. Break down
larger objectives into smaller, manageable tasks and assign responsibilities to team members.
This approach enhances accountability and helps you identify and address issues early.

 � Example: Key project milestones include completing a security risk assessment within the
first month, deploying the patient portal on Azure within six months, conducting penetration
testing and obtaining HIPAA compliance certification within nine months, and rolling out
the portal to patients within a year. These milestones ensure that the project progresses on
schedule while maintaining data security and regulatory compliance.

By following these steps, you’ll lay a strong foundation for your cloud-native project in a multi-cloud
environment. Effective planning sets the stage for successful design, deployment, and operation of
cloud-native applications across multiple cloud platforms.

Designing cloud-native applications for multi-cloud
Designing cloud-native applications for a multi-cloud environment is a complex task that requires
careful planning and consideration of various factors. Here are detailed explanations of some of the
key considerations when designing cloud-native applications for multi-cloud:

• Portability: Portability is a foundational principle when designing cloud-native applications. It
entails creating applications that can seamlessly run on various cloud platforms without requiring
significant modifications. To achieve this, developers should adopt cloud-agnostic technologies
and standards. Technologies such as containers and container orchestration platforms such as
Kubernetes, which is mentioned in detail in Chapter 2, Building the Backbone of Cloud-Native
Applications, have gained popularity for their ability to abstract away cloud-specific intricacies.
By avoiding vendor lock-in through the use of proprietary services, developers ensure that

Designing cloud-native applications for multi-cloud 189

their applications remain adaptable and flexible, capable of migrating between cloud providers
as needed.

• Resilience: Resilience is a critical aspect of cloud-native application design, especially in
multi-cloud environments. It involves building applications that can withstand failures on
any one cloud platform or in any region. To accomplish this, a distributed architecture is key.
Applications should be architected to operate across multiple cloud regions or providers,
minimizing single points of failure. Additionally, implementing failover mechanisms is crucial.
These mechanisms enable automatic redirection of traffic to an operational cloud platform if
one experiences issues, ensuring continuous service availability.

• Performance: Performance optimization is imperative to deliver a consistent user experience
across all cloud platforms. Cloud-native applications must be designed to be scalable and capable
of dynamically allocating resources based on varying workloads. Cloud-native technologies
such as auto-scaling and load balancing play a vital role in efficiently distributing traffic and
resources. By adopting these practices, applications can maintain high performance levels,
regardless of the cloud platform they are hosted on.

• Cost: Managing costs is a fundamental consideration when operating in a multi-cloud
environment. We’ve explored in detail, in Chapter 6, Maximizing Value and Minimizing Cost
of Multi-Cloud, that cost optimization involves regular analysis and optimization of resource
utilization to minimize wastage. Cloud cost management tools and cost monitoring services
provide insights into resource spending, allowing organizations to make informed decisions.
Cost control strategies, such as rightsizing resources and leveraging reserved instances, can
further help in optimizing cloud expenses. Ultimately, being mindful of cost implications ensures
that cloud-native applications are not only technically sound but also financially sustainable
in a multi-cloud setup.

Note
Dynamic management of resources of cloud-native applications can be an inflection point
for cost management in multi-cloud. The flexibility of scaling cloud resources according to
fluctuating needs eliminates the risk of both overprovisioning and underutilizing resources.

These were the few considerations that are required for designing cloud-native applications. Now, we
will see the steps required to design a cloud-native application on multi-cloud.

Bringing Your Cloud-Native Application to Life190

Designing a cloud-native application on multi-cloud

Cloud-native applications are emerging as the gold standard and these applications are designed to
leverage cloud computing to their advantage, offering unparalleled flexibility and performance. The
journey of designing cloud-native applications on multi-cloud encompasses various facets, from
defining requirements to optimizing for performance and cost. Let’s delve into them:

1. Define your requirements: Before embarking on the design process, it’s crucial to define
your application’s requirements clearly. This includes both functional requirements (what
the application should do) and non-functional requirements (how well it should perform).
Understanding your performance and cost targets is vital. Are you building a high-availability
system that requires low-latency responses, or is cost-efficiency your primary concern? Defining
these requirements upfront helps guide your design decisions.

 � Example: Suppose you’re developing an e-commerce platform. Your functional requirements
may include features such as user registration, product search, and payment processing.
Non-functional requirements could involve handling 10,000 concurrent users, ensuring
transactions complete within 2 seconds, and keeping operational costs below $10,000
per month.

2. Choose the right cloud platforms: Selecting the appropriate cloud platforms is a critical
decision. Evaluate different cloud providers based on their features, pricing models, and support
services. Ensure that the chosen platforms align with your application’s requirements. For
example, if you need advanced machine learning capabilities, a cloud provider with robust AI
services might be essential. Conversely, if cost optimization is paramount, consider providers
with flexible pricing structures.

 � Example: Imagine you’re building a data analytics application. Amazon Web Services
(AWS) offers a range of analytics tools such as Amazon Redshift and Athena, while Google
Cloud Platform (GCP) provides BigQuery. Depending on your application’s compatibility
and pricing structure, you might choose AWS for data warehousing and GCP for machine
learning services.

3. Design a cloud-agnostic architecture: To ensure multi-cloud compatibility, design your
application with a cloud-agnostic mindset. Use technologies and frameworks that are not tied
to a specific cloud provider. Containers and container orchestration tools such as Kubernetes
are popular choices for achieving this portability. Moreover, tools such as Terraform, explored
in Chapter 4, Crafting and Deploying in the Multi-Cloud as a Developer, can automate cloud
configuration across multiple providers, and your deployment will be ruled by a centralized
file, increasing the portability of your cloud-native application across the multi-cloud. Later in
this chapter, we will also visit a practical example of deploying a cloud-native application across
different cloud providers. By avoiding vendor-specific services and APIs, you can seamlessly
deploy your application across multiple clouds.

Designing cloud-native applications for multi-cloud 191

 � Example: Instead of relying on proprietary databases, you can choose open source databases
such as PostgreSQL or use cloud-neutral storage solutions such as Amazon S3 or Google
Cloud Storage. By avoiding vendor-specific services, your application can easily migrate
between clouds.

4. Design for resilience: Resilience is a core aspect of multi-cloud design. Develop your application
with a distributed architecture that can gracefully handle failures on any cloud platform. Implement
mechanisms for automatic failover to alternate cloud providers in case of downtime or issues. This
approach guarantees uninterrupted service delivery, even in the face of unexpected disruptions.

 � Example: Consider an online collaboration tool. If the cloud provider hosting your chat
service experiences an outage, your application should seamlessly switch to an alternate
provider, ensuring uninterrupted communication for users.

5. Design for performance: Performance optimization is essential to meet user expectations
across various cloud platforms. Design your application to be inherently scalable, capable of
efficiently utilizing cloud resources. Implement auto-scaling capabilities that dynamically adjust
resource allocation based on workload fluctuations. Ensure your application can accommodate
different types of workloads, from steady-state operations to sudden traffic spikes.

 � Example: If you’re developing a content delivery application, optimize your application for
global distribution. Use a content delivery network (CDN) to cache and serve content from
edge locations, ensuring low latency for users worldwide.

6. Design for cost: Cost management is crucial in a multi-cloud environment. Evaluate the cost
implications of deploying and operating your application on multiple cloud platforms. Choose
a pricing model that aligns with your budget and usage patterns. Implement cost-control
strategies such as resource rightsizing and utilization monitoring. Regularly analyze cost data
to optimize spending and ensure cost-effectiveness in a multi-cloud setup.

 � Example: Let’s say you run a media streaming service. Depending on usage patterns, you
might choose a mix of on-demand and reserved instances on AWS, Azure, and GCP to
balance cost and performance.

Note
Remember that in Chapter 3, Designing for Diversity with Multi-Cloud Application Strategies,
we provided a compilation of design patterns for cloud-native applications. Depending on the
priorities of your business logic, you can opt for one pattern or another.

This section taught us the key considerations and steps of designing a native cloud app on multi-cloud
platforms. Now, we will focus on how to build a cloud-native application.

Bringing Your Cloud-Native Application to Life192

Building your cloud-native application

Building your cloud-native application involves crafting an application architecture and structure that
leverages cloud technologies and principles to maximize scalability, flexibility, and resilience. This
process encompasses decisions about programming languages, frameworks, microservices design,
and integrations with cloud-native tools and services. Building a cloud-native application is not
only about writing code but also about embracing a cloud-first mindset, enabling your application
to thrive in dynamic multi-cloud environments. Here are the few points to consider while building
a cloud-native application:

• Choosing the right programming languages and frameworks

Choosing the right programming languages and frameworks for building a cloud-native
application is a critical decision that significantly impacts your project’s success. Here’s a detailed
explanation of this aspect:

 � Team’s expertise: Consider the skills and expertise of your development team. Choosing a
language and framework that your team is familiar with can boost productivity and reduce
the learning curve. It enables developers to work efficiently, write high-quality code, and
troubleshoot issues effectively.

 � Application requirements: Understand the specific requirements of your cloud-native
application. Different applications have different needs. Consider factors such as the following:

 � Performance: If your application requires high performance, you might choose languages
that are known for speed and efficiency, such as Go or Rust

 � Scalability: For applications that need to scale horizontally, consider languages and
frameworks that support microservices architecture, such as Java with Spring Boot or
Node.js with Express.js

 � Data processing: If your application involves heavy data processing or analytics, languages
such as Python are ideal due to their rich ecosystem of data processing libraries (e.g.,
pandas and NumPy)

 � Real-time processing: For real-time applications with low-latency requirements,
consider languages such as Node.js, which is event-driven and suitable for handling many
simultaneous connections

 � Community support: Evaluate the community support and ecosystem around the programming
language and framework. A vibrant and active community can provide resources, libraries,
and solutions to common problems. It’s also an indicator of the framework’s longevity
and relevance.

• Microservices architecture and containerization: This approach involves breaking down
your application into small, independently deployable services. Containerization, facilitated by
technologies such as Docker, plays a crucial role in this context as it encapsulates these services,

Designing cloud-native applications for multi-cloud 193

making them portable and efficient. For more details, please refer to Chapter 2, Building the
Backbone of Cloud-Native Applications

• Integrating cloud-native tools and services: When building a cloud-native application, it’s
crucial to leverage the tools and services provided by cloud providers. These cloud-native
services are specifically designed to simplify and optimize various core functionalities within
your application. They cover a wide range of needs, from data storage and computation to
security and scalability.

In Chapter 4, Crafting and Deploying in the Multi-Cloud as a Developer, we introduced the
concept of the service mesh and highlighted its importance in managing an increasing number
of services, and their respective communications, a typical scenario in a cloud-native application
deployed in the multi-cloud.

For instance, if you’re using a cloud provider such as AWS, you have access to services such as
Amazon S3 for scalable object storage or AWS Lambda for serverless computing. By integrating
these cloud-native services into your application, you can offload complex tasks and processes
to the cloud platform, benefiting from its robust infrastructure and scalability. This, in turn,
allows your development team to focus more on the application’s business logic and less on
managing infrastructure.

• Ensuring cross-cloud compatibility: As you are aware, multi-cloud deployments involve
using more than one cloud provider to ensure redundancy, avoid vendor lock-in, and optimize
costs. However, different cloud providers have their unique services, APIs, and infrastructure.

To make your application compatible with multiple cloud providers, you should design it to
be cloud-agnostic. This means building the application in a way that it can seamlessly run on
different cloud platforms without requiring significant modifications.

To achieve this, you can use cloud-agnostic databases, storage solutions, and APIs. For example,
you might opt for databases such as PostgreSQL, which is compatible with various cloud
providers. Similarly, you can design your application’s storage layers to be independent of a
specific cloud provider’s storage service, making it easier to switch between providers or use
multiple providers simultaneously.

By ensuring cross-cloud compatibility, you reduce the risk of vendor lock-in, allowing you to choose
the best services and pricing models from different providers based on your application’s needs
and cost-efficiency. This flexibility is essential in multi-cloud environments where adaptability and
optimization are key considerations.

Bringing Your Cloud-Native Application to Life194

Practical examples: building effective cloud-native
applications
Now that we know what points to consider while building a cloud-native application, let’s consider a
few examples to understand them:

• Internet of Things (IoT) sensor data analytics platform: Imagine you’re developing an IoT
platform that collects data from thousands of sensors deployed in various locations. This
platform needs to efficiently gather, process, and analyze sensor data in real time to provide
insights and trigger actions. In this scenario, a combination of programming languages and
frameworks can be utilized:

 � Java for scalability: Java is known for its robustness and scalability. It could be used for
building the backend services of the IoT platform, especially when dealing with a large
number of sensor data inputs. The use of Java’s multithreading capabilities can help handle
concurrent data streams effectively.

 � Apache Kafka for data streaming: Apache Kafka, often used with Java, can be employed as a
data streaming platform. It can handle the ingestion of data from sensors and distribute it to
various processing modules in real time. Kafka provides fault tolerance and high throughput,
making it suitable for handling sensor data streams.

 � Apache Spark for data processing: Apache Spark, typically used with Scala or Python, can
be employed for real-time data processing and analytics. It can process incoming sensor
data streams, perform analytics, and generate insights in real time. Scala, being compatible
with Java and designed for distributed data processing, is a suitable choice for developing
Spark applications.

 � React.js for dashboards: On the frontend, React.js can be used to create a user-friendly
dashboard that allows users to visualize and interact with the sensor data. React’s component-
based architecture and virtual DOM make it a popular choice for building dynamic and
responsive web interfaces.

• Ride-sharing and navigation service: Imagine you are developing a ride-sharing and navigation
service similar to Uber or Lyft, where users can request rides, drivers can accept those requests,
and passengers are provided with real-time navigation. To efficiently build such a service with
microservices architecture, you can consider the following choices of programming languages
and frameworks:

 � Java for microservices: Java is a robust and widely adopted language for building microservices
due to its strong typing, excellent performance, and rich ecosystem of libraries. Each
microservice in your application can be developed using Java.

 � Spring Boot for microservices: Spring Boot is a popular framework for building microservices
in Java. It simplifies the development of standalone, production-grade Spring-based applications.

Deployment best practices 195

You can create microservices for user registration, ride requests, driver management, and
more using Spring Boot.

 � Node.js for real-time features: For real-time communication between drivers, passengers,
and the central server, Node.js can be an excellent choice. Node.js, with libraries such as
Socket.io, can handle real-time notifications, such as ride requests, driver updates, and route
calculations, efficiently.

 � React Native for cross-platform mobile apps: To provide a seamless mobile experience
to both passengers and drivers, React Native can be used. React Native allows you to build
cross-platform mobile applications for iOS and Android using JavaScript and React. This
ensures that users on different platforms can access your service.

 � Docker for containerization: Containerization is essential for deploying microservices
independently and ensuring consistency across various cloud platforms. Docker can be used
to containerize each microservice, making it easy to manage and scale.

 � Kubernetes for orchestration: Kubernetes can be employed to orchestrate and manage
the deployment of microservices. It provides features for auto-scaling, load balancing, and
monitoring microservices across multi-cloud environments.

In the preceding examples, the choice of programming languages and frameworks aligns with the
specific requirements of the applications, showcasing the importance of considering factors such as
data processing, scalability, and real-time capabilities when making these decisions in the context of
cloud-native development for multi-cloud environments.

Deployment best practices
In this section, we will learn about deployment best practices for cloud-native applications in a multi-
cloud environment. Deployment is a critical phase in the application life cycle, ensuring that your
application is delivered reliably and efficiently to your target cloud platforms. Let’s delve into some
key aspects of it:

• Continuous Integration/Continuous Deployment (CI/CD) pipelines: CI/CD pipelines are the
backbone of modern software development. They automate the steps from integrating new code
into your application to deploying it into production environments. In multi-cloud scenarios, CI/
CD ensures that your application is consistently and efficiently delivered across different cloud
platforms. CI/CD promotes consistency in code integration, testing, and deployment, which
is crucial when targeting multiple cloud providers. It helps eliminate variations in deployment
processes across different platforms. Here are some best practices that can be implemented to
achieve optimal results in CI/CD space:

 � Automate testing: Implement automated testing suites, including unit tests, integration
tests, and end-to-end tests. Tools such as Selenium, JUnit, or Jest can be integrated into
your pipeline.

Bringing Your Cloud-Native Application to Life196

 � Automate deployment: Utilize deployment scripts and tools to automate the deployment
process. Docker and Kubernetes can help manage containerized applications consistently
across clouds.

 � Git repository: Maintain a Git repository for your code base. Git is widely used and integrates
seamlessly with CI/CD tools. Use branching and tagging strategies for version management.

 � Code reviews: Enforce code reviews as part of your pipeline. This ensures code quality and
reduces the likelihood of introducing issues.

 � Artifact repository: Utilize artifact repositories such as JFrog Artifactory or Nexus Repository
to store and manage build artifacts. This ensures that you’re using the correct versions
of dependencies.

 � Pipeline as code: Treat your CI/CD pipeline as code using tools such as Jenkins Pipeline DSL or
GitLab CI/CD YAML. This allows you to version and reproduce your pipeline configurations.

Let’s consider an example to understand CI/CD usage. You’re deploying a microservices-based
e-commerce application to multiple clouds. Your CI/CD pipeline consists of stages for code
integration, automated testing (unit tests, API tests), building container images, and deploying
to cloud environments. If a new feature is added, the pipeline automatically builds, tests, and
deploys it to each cloud platform, ensuring consistency and reliability.

• Infrastructure as Code (IaC) for reproducible deployments: Introduced in Chapter 4,
Crafting and Deploying in the Multi-Cloud as a Developer, was a methodology for managing and
provisioning infrastructure components using code and automation. In multi-cloud scenarios,
IaC allows you to define, configure, and provision cloud resources consistently across different
providers. The following are some best practices that can be implemented to achieve optimal
results in the IaC space:

 � Declarative IaC: Use tools such as Terraform or AWS CloudFormation to declare your
infrastructure’s desired state. These tools work based on the principle of declarative IaC,
where you specify what you want (e.g., a database server with specific configurations), and
the tool handles provisioning and management.

 � Version control: Store IaC scripts alongside your application code in a version control
repository, such as Git. This practice ensures that changes to your infrastructure are versioned
and can be tracked alongside code changes.

 � Modularization: Organize your IaC scripts into reusable modules. These modules can
represent common infrastructure components (e.g., databases, virtual networks) and can
be shared across projects, enhancing efficiency.

 � Parameterization: Parameterize your IaC scripts to make them adaptable to different
environments or cloud providers. This allows you to reuse scripts with slight variations for
each cloud platform.

Deployment best practices 197

Let’s consider a simple example to understand IaC usage. Suppose you’re deploying a web application to
both AWS and GCP. With IaC, you can define the required cloud resources, such as virtual machines,
databases, and networking components, in code. Here’s a simplified example using Terraform (Git
repo: https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-
Developers/tree/main/Chapter-9):

Define an AWS EC2 instance
resource "aws_instance" "web_server_aws" {
 ami = «ami-0c55b159cbfafe1f0
 instance_type = «t2.micro»
 tags = {
 Name = "MyWebServer-AWS"
 }
}

Define a GCP Compute Engine instance
resource "google_compute_instance" "web_server_gcp" {
 name = "my-web-server-gcp"
 machine_type = "f1-micro"
 zone = "us-central1-a"

 boot_disk {
 initialize_params {
 image = "debian-cloud/debian-9"
 }
 }

 network_interface {
 network = "default"
 }
}

In this example, the same infrastructure components (web servers) are defined using Terraform for
AWS and GCP. When you apply this IaC script to each cloud provider, it provisions the corresponding
resources, ensuring consistency in your multi-cloud deployments.

https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-9):
https://github.com/PacktPublishing/Multi-Cloud-Handbook-for-Developers/tree/main/Chapter-9):

Bringing Your Cloud-Native Application to Life198

Security best practices for deployment
As we presented in Chapter 5, Managing Security, Data, and Compliance on Multi-Cloud, security is
paramount when deploying cloud-native applications in multi-cloud environments. In this section,
we’ll explore key security measures such as encryption and IAM and security audits, to safeguard
your applications:

• Encryption: This is fundamental for securing data both in transit and at rest. It ensures that
even if unauthorized access occurs, the data remains unreadable. Let’s consider some examples:

 � Transport Layer Security (TLS)/Secure Sockets Layer (SSL): Implement TLS/SSL for data
in transit. For instance, you can configure NGINX as a reverse proxy with Let’s Encrypt
to automatically manage SSL certificates, securing communication between users and
your application.

 � Encryption-at-rest: Employ encryption mechanisms provided by cloud providers. In AWS,
use Amazon S3 server-side encryption to protect data stored in S3 buckets. This ensures that
data files, backups, and logs are encrypted.

• Identity and Access Management (IAM): IAM helps control access to cloud resources and
services. It ensures that only authorized entities can interact with your application. Let’s consider
some examples:

 � AWS IAM roles: In AWS, define IAM roles with specific permissions for services or
applications. For instance, create a role that allows EC2 instances to access necessary S3
buckets. Attach this role to the instances.

 � Azure Active Directory (Azure AD): Utilize Azure AD to manage user identities and access
control in Azure. Configure role-based access control (RBAC) to define who can perform
actions on specific Azure resources.

• Regular security audits: Continuous monitoring and security audits are essential for identifying
vulnerabilities and ensuring compliance:

 � Vulnerability scanning: Employ tools such as Nessus or Qualys to scan your application and
infrastructure for vulnerabilities. Schedule regular scans and address identified issues promptly.

 � Penetration testing: Conduct penetration tests to simulate attacks on your application.
Identify weaknesses in your security measures and patch them. Services such as AWS Security
Hub offer automated vulnerability and threat detection.

By implementing these security measures and examples, you can significantly enhance the security
of your cloud-native applications across multiple cloud platforms. However, remember that security
is an ongoing process, and staying updated on best practices and emerging threats is crucial.

Load testing and performance optimization 199

Load testing and performance optimization
In the context of multi-cloud cloud-native application development, load testing and performance
optimization play a vital role in ensuring your application delivers a seamless experience to users. Let’s
delve into what load testing is, its significance, and provide detailed examples of its implementation:

• Load testing: It is the process of evaluating how a system or application performs under
specific conditions of load or stress. It involves simulating a large number of concurrent users
or requests to assess the application’s responsiveness, scalability, and stability. In multi-cloud
environments, where applications are distributed across various cloud providers, load testing
becomes even more critical due to potential variability in cloud performance. Now, let’s
understand the significance of load testing:

 � Identify performance bottlenecks: Load testing helps pinpoint performance bottlenecks,
allowing you to optimize critical components before deploying to multiple cloud platforms.

 � Ensure scalability: Multi-cloud environments require the ability to scale resources dynamically.
Load testing ensures your application can scale efficiently to meet traffic demands.

 � Optimize resource allocation: Optimizing resource allocation across different cloud
providers ensures cost-effectiveness.

• Performance optimization: Performance optimization is a crucial aspect of developing multi-
cloud cloud-native applications. It involves a set of practices and techniques aimed at enhancing
the speed, responsiveness, and efficiency of your application. In the context of multi-cloud,
where applications span multiple cloud providers, optimizing performance becomes even
more critical to deliver a seamless user experience across diverse cloud environments. Now,
let’s understand its significance:

 � User experience: Performance directly impacts user satisfaction. Faster response times and
smoother interactions lead to happier users.

 � Cost efficiency: Efficient applications consume fewer cloud resources, translating to cost
savings, especially in multi-cloud scenarios where resource costs may vary across providers.

 � Scalability: Performance optimization ensures your application can scale effectively to handle
increased traffic or workloads in multi-cloud environments.

Now that we have an understanding of load testing and performance optimization, let’s consider an
example to understand them.

Bringing Your Cloud-Native Application to Life200

Performing load testing and performance optimization

In this section, we will look at some examples to understand load testing and performance optimization:

• Load testing with Apache JMeter: Apache JMeter is a widely used open source tool for load
testing. You can simulate heavy loads by configuring test plans with various scenarios. Run
tests against your application deployed on different cloud providers to assess its performance
under different conditions.

• Database query optimization: Analyze and optimize database queries to reduce response
times. Use database indexing and caching to enhance query efficiency.

• Content Delivery Networks (CDNs): Utilize CDNs to distribute static assets (e.g., images,
stylesheets) to edge locations, reducing latency for users across different regions and cloud providers.

• Caching mechanisms: Implement caching layers for frequently accessed data. Tools such as
Redis and Memcached can be used to store and retrieve data quickly, reducing the load on
your application’s backend.

Troubleshooting and optimization
As we delve into the critical aspects of troubleshooting and optimization for multi-cloud cloud-native
applications. This section is essential for maintaining the reliability and efficiency of your applications
across diverse cloud environments. For more information about troubleshooting strategies for cloud-
native application, you can refer back to Chapter 7, Troubleshooting Multi-Cloud Applications, of this book.

Let’s see some common deployment issues as these issues can occur frequently in multi-cloud
scenarios due to variations in cloud providers and infrastructure. Identifying and addressing these
issues promptly is crucial. Common deployment issues include the following:

• Resource mismatch: Resource mismatch occurs when cloud providers offer similar services
with varying specifications. For example, AWS and Azure may both offer virtual machines
(VMs), but their available VM sizes, performance characteristics, and pricing structures
can differ significantly. This can lead to compatibility problems when migrating or scaling
applications across clouds.

To address the challenges faced with resource mismatch, the following measures can be taken:

 � Cloud-agnostic configurations: Develop configurations that abstract cloud-specific details.
Instead of defining VM sizes explicitly, use variables or parameters that can be mapped to
specific sizes in different clouds.

 � Automated translation: Implement scripts or tools that can automatically translate resource
definitions from one cloud provider to another. For example, if your application uses AWS’s
t2.micro, the script can map it to an equivalent Azure VM size.

Optimization and scaling 201

• Networking challenges: Inconsistent network configurations or firewall rules can disrupt
communication between application components when deploying across multiple clouds.
Each cloud provider has its networking and security services, which may require different
settings and rules.

To address the challenges faced with networking, the following measures can be taken:

 � Use cloud-agnostic networking: Deploy networking components that are cloud-agnostic
and can adapt to different cloud environments. For example, use Kubernetes for container
orchestration, which abstracts network complexities.

 � Automate network setup: Implement automation scripts or templates that configure
networking resources based on your application’s requirements. Tools such as Terraform
or Ansible can be helpful.

• Data consistency: Maintaining data consistency across multi-cloud data storage solutions can
be challenging. Data synchronization issues can arise when data is replicated or moved between
different cloud storage systems.

To address the challenge faced with data consistency, the following measures can be performed:

 � Multi-cloud database solutions: Consider using databases designed for multi-cloud use
cases, such as Google Cloud Spanner or CockroachDB. These databases are built to ensure
data consistency across clouds.

 � Data replication strategies: Implement data replication strategies that synchronize data
between cloud databases in near real time, ensuring consistency.

• Scaling problems: Scaling an application across clouds may encounter challenges such as
load balancing or auto-scaling configuration discrepancies. Each cloud provider offers its load
balancing and scaling services with unique configurations.

To address the challenges faced with scaling, the following measures can be performed:

 � Load balancer abstraction: Use load balancer abstraction layers that can adapt to different
cloud providers. Kubernetes built-in load balancing or services such as AWS Elastic Load
Balancer (ELB) provide this abstraction.

 � Auto-scaling templates: Create templates or scripts that define auto-scaling rules in a cloud-
agnostic way. These templates can be translated to cloud-specific auto-scaling configurations
during deployment.

Optimization and scaling
In cloud-native application development across multi-cloud environments, optimization and scaling
are paramount. These practices ensure that your applications run efficiently and cost-effectively, and

Bringing Your Cloud-Native Application to Life202

can handle varying workloads. Let’s delve into details of how to achieve optimization, scaling, and
tuning a multi-cloud environment:

Cost-optimization strategies

Cost optimization is a foundational principle in multi-cloud development. Chapter 6, Maximizing
Value and Minimizing Cost of Multi-Cloud, provided a comprehensive view about optimizing costs
when developing cloud-native applications, thanks to advanced techniques such as FinOps. We came
to understand that cost optimization involves balancing the allocation of cloud resources with budget
constraints to maximize value:

• Implementing FinOps practices: FinOps (short for Financial Operations) practices are a set
of principles and techniques used to manage cloud costs effectively. They promote a culture of
financial responsibility within organizations using cloud services.

 � Example: When implementing FinOps, you can create cost-aware teams responsible for
managing their cloud resources. Each team can be assigned a specific set of cost allocation
tags, such as “environment,” “owner,” or “project.” For example, tagging a resource as
“production” helps in tracking its cost within the multi-cloud environment, making cost
allocation transparent and accountable.

• Cloud cost management tools and techniques: Cloud cost management involves leveraging
various tools and methodologies to control, analyze, and optimize cloud expenses. These tools
help organizations gain insights into their cloud spending and make informed decisions to
reduce costs.

 � Example: AWS Cost Explorer is a powerful tool that provides detailed cost and usage reports.
By setting up budgets and alerts, you can proactively monitor your cloud spending. For
instance, if your budget for a specific project is exceeded, you will receive an alert, allowing
you to take immediate action to prevent unexpected overruns.

• Right-sizing resources for cost efficiency: Right-sizing is the practice of aligning your cloud
resources with the actual needs of your applications. It involves selecting the appropriate instance
types, storage capacities, and other cloud services to meet your performance requirements
while optimizing costs.

 � Example: Suppose your application experiences variable workloads with periods of high and
low demand. In such cases, you can leverage AWS EC2 instances with burstable performance
(e.g., T2 or T3 instances). These instances provide burstable CPU capacity, allowing you
to pay only for the CPU power you use during peak periods while reducing costs during
low-demand times.

Optimization and scaling 203

• Monitoring and optimizing cloud spend: Continuous monitoring of cloud spend is a fundamental
practice. It involves regularly reviewing cost reports, tracking changes in resource usage, and
making necessary adjustments to optimize cloud spending.

 � Example: Let’s say you observe a sudden spike in storage costs within your multi-cloud
environment. To optimize spending, you can investigate the cause, which might be redundant
data storage or outdated backups. By identifying and addressing these issues promptly, you
can reduce costs by deleting unnecessary files, ensuring efficient resource usage.

Scalability and elasticity

Scalability and elasticity ensure that your applications can adapt to varying workloads while maintaining
high availability and performance:

• Auto-scaling policies for dynamic workloads: Auto-scaling policies are dynamic resource
management mechanisms that automatically adjust computing resources based on real-time
workload changes. This allows applications to efficiently handle fluctuations in traffic.

 � Example: Consider an e-commerce website that experiences increased traffic during holiday
sales. By configuring AWS Auto Scaling, you can set policies that monitor application metrics
(e.g., CPU utilization, request latency). When traffic surges, additional server instances are
automatically added to distribute the load effectively. During quieter periods, excess instances
are removed, optimizing resource utilization and cost-efficiency.

• Load balancing across multi-cloud environments: Load balancing is essential for evenly
distributing incoming network traffic across multiple cloud instances or regions. It ensures
high availability, minimizes response times, and prevents overloading of individual resources.

 � Example: AWS (ELB) can distribute incoming traffic to resources in both AWS and Azure.
By defining routing rules, you can efficiently allocate traffic across clouds, ensuring optimal
resource utilization. This not only enhances performance but also adds a layer of fault
tolerance to your multi-cloud setup.

• Designing for elasticity and high availability: Designing for elasticity involves implementing
redundancy and failover mechanisms. High availability strategies ensure that your application
remains accessible even in the face of failures.

 � Example: To achieve high availability in a multi-cloud scenario, deploy your application in
multiple regions on both AWS and Azure. Implement data replication mechanisms to ensure
data consistency between regions. If one region encounters issues, the other can seamlessly
take over, providing uninterrupted service to users.

Bringing Your Cloud-Native Application to Life204

• Handling traffic spikes and surges: To handle unexpected traffic spikes and surges in demand,
it’s crucial to employ strategies such as burstable resources, caching, and content delivery
networks (CDNs).

 � Example: Consider a news website that utilizes a CDN to cache and serve static content such
as images. When a breaking news event leads to a sudden surge in traffic, the CDN efficiently
delivers cached content to users, reducing the load on origin servers. This ensures that the
website remains responsive and accessible, even during traffic spikes.

Performance monitoring and tuning

Performance monitoring and tuning are paramount for maintaining optimal application performance
in multi-cloud environments. These practices enable you to ensure that your applications run efficiently,
deliver excellent user experiences, and meet service-level objectives.

• Setting up comprehensive monitoring systems: Establishing comprehensive monitoring
systems involves the implementation of tools and processes to capture data on various aspects of
your application, including resource utilization, response times, and overall application health.

 � Example: Use cloud-native monitoring services such as AWS CloudWatch and Azure
Monitor to collect metrics and monitor the health of critical application components, such as
databases, web servers, and microservices. Configure custom alarms to proactively detect and
respond to performance anomalies, ensuring the reliability of your multi-cloud applications.

• Real-time performance dashboards: Real-time performance dashboards provide a visual
representation of key performance indicators (KPIs) and resource utilization in your
multi-cloud environment. They offer immediate insights into the health and performance of
your applications.

 � Example: Create custom dashboards using visualization tools such as Grafana, which can
integrate with various cloud providers and data sources. Alternatively, leverage cloud-native
solutions such as AWS CloudWatch dashboards to build real-time dashboards that display
critical metrics, enabling your teams to respond promptly to performance deviations and
optimize resource allocation.

• Identifying bottlenecks and latency issues: Identifying bottlenecks and latency issues
involves analyzing performance metrics, logs, and application behavior to pinpoint areas
where performance is suboptimal. Latency issues can result from inefficient code, resource
limitations, or other bottlenecks.

 � Example: Analyze application logs and performance metrics to identify slow database
queries that contribute to latency. Optimize these queries by restructuring them or scaling
the database tier horizontally or vertically. This optimization can significantly improve
response times and overall application performance in a multi-cloud setup.

Hands-on exercise: e-commerce in multi-cloud architecture 205

• Tuning applications for optimal multi-cloud performance: Continuous tuning of your
applications is essential for achieving the best possible performance in a multi-cloud environment.
This includes refining code, configurations, and resource allocation to balance performance
and cost-effectiveness.

 � Example: If your multi-cloud application relies on serverless functions, regularly review and
adjust settings such as memory allocation and execution time. Fine-tuning these parameters
can optimize performance and resource utilization, ultimately enhancing the user experience
while controlling costs.

Hands-on exercise: e-commerce in multi-cloud
architecture
In today’s digital era, e-commerce is rapidly transforming, propelled by consumers’ increasing preference
for online shopping experiences. This shift is further supported by advanced logistics infrastructure
and seamless delivery options. However, e-commerce platforms encounter challenges reminiscent of
those faced by physical retail stores, particularly in managing peak demand periods. Unlike traditional
stores, which scale up through additional personnel and stock, e-commerce platforms rely on the
strategic provisioning of computing resources, a domain where cloud-native applications excel.

Multi-cloud architectures enable e-commerce platforms to seamlessly scale and optimize resources
to meet surging demand, ensuring highly available applications and ultimate customer satisfaction.
Additionally, cloud-native applications prioritize security and create safe, secure environments
for online transactions. To illustrate this, let’s explore a practical example on GitHub (https://
github.com/GoogleCloudPlatform/microservices-demo) for an e-commerce store.
This comprehensive example delves into various aspects, from project planning and architecture to
monitoring and Site Reliability Engineering (SRE), providing a valuable blueprint for building high-
performing, resilient e-commerce platforms. Let’s take a look in detail.

Project planning:

• Project objective: Modernize the online boutique e-commerce platform by improving
performance and scalability to handle increased user traffic and product offerings. Enhance
the user experience with faster browsing, checkout, and order processing. Reduce operational
costs by adopting a cloud-native architecture.

• Key requirements:

 � The platform must be able to handle increased user traffic and product offerings without
performance degradation

 � The platform must be highly available and resilient to ensure minimal downtime and an
uninterrupted user experience

 � The platform must comply with all relevant data privacy and e-commerce regulations

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

Bringing Your Cloud-Native Application to Life206

 � The platform should leverage cloud-native technologies to optimize resource utilization
and reduce costs

 � Example: Increase the page load speed by 20% (measured with tools such as WebPageTest),
reduce the checkout time by 15% (tracked through checkout process analytics), and achieve
99.5% uptime during peak hours (monitored with the cloud provider’s uptime statistics)

• Project plan:

 � Phase 1: planning and design (1 month)

 � Define detailed project objectives and KPIs. Tools such as Jira and Trello can be used for
project management.

 � Identify key stakeholders and their roles.

 � Develop a detailed system architecture using microservices and cloud-native technologies.

 � Estimate project costs and resource requirements.

 � Phase 2: development and implementation (3 months)

 � Develop and test individual microservices

 � Implement CI/CD pipeline for automated builds and deployments

 � Integrate the platform with payment gateways and other third-party services

 � Conduct security audits and penetration testing

 � Phase 3: testing and deployment (1 month)

 � Perform thorough functional and non-functional testing of the platform

 � Deploy the platform to a production environment and monitor performance

 � Train users on the new platform and its features

 � Phase 4: monitoring and optimization (ongoing)

 � Continuously monitor platform performance and identify areas for improvement

 � Optimize cloud resources to reduce costs and improve efficiency

 � Implement new features and updates based on user feedback and market trends

Hands-on exercise: e-commerce in multi-cloud architecture 207

Budgeting and FinOps:

• Budget allocation: The company allocates a budget of $5 million for this project, with cost
monitoring throughout the project life cycle

• Cost control strategies:

 � Implement resource tagging for cost allocation and tracking

 � Use cloud cost management tools to monitor spending

 � Implement policies for resource rightsizing and decommissioning underutilized resources

 � Regularly review and optimize cloud infrastructure

Architecture:

• Cloud providers:

 � Evaluate multiple cloud providers based on:

 � Cost-optimization opportunities

 � Regional availability requirements

 � Unique service offerings (e.g., specialized AI services)

 � Disaster recovery and business continuity strategies

• Consider a multi-cloud approach with GCP as the primary provider and a secondary provider
such as AWS or Azure

• Cloud-native design:

 � Employ cloud-agnostic technologies to facilitate portability:

 � Kubernetes for multi-cloud deployments (e.g., using Anthos or EKS Anywhere)

 � Istio for service meshes across multiple providers

 � Vendor-neutral observability tools (Prometheus, Grafana)

• Plan for data replication and synchronization between clouds if needed

• Example: The architecture of the boutique e-commerce platform contains 11 microservices
written in various languages that communicate with each other via gRPC protocol

Bringing Your Cloud-Native Application to Life208

Figure 9.2 – Architecture of the boutique e-commerce platform

Compliance requirements:

• Identify applicable regulations:

 � Determine any e-commerce or data privacy regulations applicable to the boutique

• Implement compliance measures:

 � Adapt compliance measures to the boutique’s context, potentially involving data encryption
and access controls

 � Keeps audit logs for monitoring and compliance reporting

DevSecOps and CI/CD:

• DevSecOps practices:

 � Integrate security into every stage of the development pipeline

 � Conduct regular vulnerability scanning and threat modeling

 � Implement automated security testing (e.g., static and dynamic code analysis)

 � Enforce RBAC and least privilege principles

• CI/CD pipeline:

 � Explore cloud-agnostic CI/CD tools (e.g., Jenkins and GitLab CI) for multi-cloud deployments

 � Configure pipelines to deploy to different cloud environments seamlessly

Hands-on exercise: e-commerce in multi-cloud architecture 209

 � Automate testing, code review, and deployment

 � Enforce deployment policies and rollback procedures

 � Monitor and log every deployment

• Example: In the code snippet is a continuous deployment workflow (GitHub actions), and it
runs on every commit to the main branch:

name: "Push and Deploy"
on:
 push:
 # run on pushes to main
 branches:
 - main
jobs:
 push-deploy:
 runs-on: [self-hosted, is-enabled]
 steps:
 - uses: actions/checkout@v4
 - name: Push latest images to GCR
 timeout-minutes: 20
 run: |
 skaffold config set --global local-cluster false
 # tag with git hash
 skaffold build --default-repo=gcr.io/$PROJECT_ID \
 --tag=$GITHUB_SHA
 env:
 PROJECT_ID: ${{ secrets.PROJECT_ID }}

Monitoring and observability:

• Monitoring stack:

 � Prioritize tools that integrate with multiple clouds (e.g., Datadog and New Relic)

 � Correlate metrics and logs across cloud environments for unified visibility

• Observability practices:

 � Set up centralized logging and monitoring dashboards

 � Implement distributed tracing with OpenTelemetry

 � Utilize synthetic monitoring tools for user experience monitoring

 � Implement automated alerting for incidents and performance anomalies

Bringing Your Cloud-Native Application to Life210

Site Reliability Engineering (SRE):

• Error budgets and SLIs/SLOs:

 � Define service-level indicators (SLIs) and service-level objectives (SLOs) for critical services

 � Establish an error budget for permissible service disruptions

• Incident management:

 � Implement an incident management process with defined roles and responsibilities

 � Utilize incident tracking tools and post-mortems for continuous improvement

 � Set up automated responses to common incidents

• Capacity planning:

 � Monitor resource utilization across clouds and adjust capacity as needed

 � Consider cloud bursting for handling peak loads

• Example: The locustfile.py file (https://github.com/GoogleCloudPlatform/
microservices-demo/blob/main/src/loadgenerator/locustfile.py)
demonstrates synthetic load generation for testing and monitoring user experience:

class UserBehavior(TaskSet):

 def on_start(self):
 index(self)

 tasks = {index: 1,
 setCurrency: 2,
 browseProduct: 10,
 addToCart: 2,
 viewCart: 3,
 checkout: 1}

class WebsiteUser(HttpUser):
 tasks = [UserBehavior]
 wait_time = between(1, 10)

This hands-on example demonstrates how an e-commerce platform can achieve scalability, resilience,
and cost-efficiency through a cloud-native, multi-cloud architecture, while prioritizing security,
observability, and continuous delivery practices.

https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/loadgenerator/locustfile.py
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/loadgenerator/locustfile.py

Summary 211

Summary
In this chapter, we’ve examined the critical facets of project planning, covering everything from setting
precise project objectives and requirements to identifying key stakeholders, establishing effective
communication channels, devising a robust multi-cloud strategy, defining budgetary parameters.

Next, we ventured into the realm of designing cloud-native applications for multi-cloud. Here, we
explored pivotal elements such as requirement definition, the selection of the most fitting cloud provider,
crafting a cloud-agnostic architecture, resilience-centric design, performance optimization, and ensuring
cost-efficiency in the development of cloud-native applications tailored for multi-cloud environments.

Following this, we delved into the intricacies of deployment best practices. We unraveled the concepts
underpinning Continuous Integration/Continuous Deployment (CI/CD) pipelines and demystified
Infrastructure as Code (IaC) while addressing associated security considerations. Furthermore, we
delved into practical examples of load testing and performance optimization, providing insights into
troubleshooting strategies to maintain a resilient application.

The next and final chapter will provide a glimpse into the future of multi-cloud and cloud-native
development. We will explore emerging trends and innovative technologies, community involvement
in platform engineering, and the role of the Cloud Native Computing Foundation (CNCF) in shaping
the landscape of multi-cloud applications.

10
Future-Proofing Your Cloud

Computing Skills

Welcome to the final chapter in our exploration of multi-cloud and cloud-native technologies. Here,
we synthesize our journey’s insights and look ahead to the transformative potential of these evolving
technologies. Before we move further into the chapter, let us have a quick recap of what we have gone
through so far.

Our exploration began with cloud-native technologies, revealing a paradigm shift in application
development and management, emphasizing elasticity, distribution, and agility. We delved into
containerization, microservices, and dynamic orchestration, foundational elements that enhance
scalability, resilience, and manageability.

In parallel, we examined multi-cloud environments, focusing on strategic combinations of cloud
services for robust, versatile infrastructures. This approach enhances disaster recovery (DR) and
performance optimization and reduces vendor lock-in, also from a broader picture of where multi-
cloud meets cloud-native and how they both collectively add value.

As we pivot toward the future, let’s look into emerging trends and cutting-edge technologies that are
reshaping cloud computing. We’ll explore how these advancements enhance technical capabilities
and influence the broader ecosystem of the digital and IT landscape in the realm of cloud-native and
multi-cloud paradigms.

As we look ahead to the future of cloud computing, these groundbreaking topics will define the next
wave. Let’s explore the following areas one by one:

• Next-generation cloud-native infrastructure and platforms

• Introduction to artificial intelligence (AI) and machine learning (ML) in cloud-native evolution

• The emergence of serverless architecture and event-driven architecture (EDA)

• Advanced security paradigms for cloud-native applications

Future-Proofing Your Cloud Computing Skills214

• Quantum computing (QC) and its impact on cloud technologies

• Sustainable cloud computing – a new era

• The convergence of telco and edge computing with cloud-native

• Blockchain integration with cloud-native development

• The rise of low-code (LC)/no-code (NC) platforms

• Cloud-native governance and compliance in the future

• Conclusion – preparing for a cloud-native future

Before we proceed, let’s embrace this journey with an open mind, a spirit of innovation, and a readiness
to adapt. The future of cloud computing is not just an unfolding reality but a landscape we are actively
shaping with our ideas, creativity, and visionary aspirations. Let’s step forward with anticipation and
enthusiasm, ready to explore and harness the transformative potential that lies ahead in the world of
multi-cloud and cloud-native technologies.

Next-generation cloud-native infrastructure and
platforms
Platform engineering is transforming in exciting ways, reshaping how we think about cloud-native
development. It’s no longer just about using cloud services. Now, it’s about building ecosystems that
boost efficiency and spark innovation. This shift marks a move away from traditional IT methods
toward a more integrated, holistic approach. The focus is on making everything automated and user-
friendly, with a strong emphasis on DevOps practices.

Throughout this book, we have covered topics related to platform engineers and how they partner with
developers. Looking ahead, it is important to understand that the aim of platform engineering is to
create systems that are not only strong and scalable but also quick to adapt to the ever-changing needs
of businesses. We’re steering toward platforms that can foresee future trends and adjust seamlessly.
These platforms are designed to be more than technical structures; they are enablers of business growth
and innovation. In the coming years, platform engineering will likely play a crucial role in the digital
transformation of companies, making it an exciting field to watch.

Evolution of platform engineering

The traditional paradigm for deploying applications requires slow and hierarchical routines to approve
and deploy new features. This scenario was often deemed slow and not responsive enough to surging
market needs. After that, DevOps proposed more agile development paradigms proven to be more
resilient and easily scalable to cope with current market demands.

With a strong collaboration with DevOps practices, platform engineering has intensified its focus on
studying architectural and platform needs for modern application developments. The main focus of

The rise of immutable infrastructure and its implications 215

platform engineering is to design tailored workflows and toolchains that will define a native cloud
ecosystem for the application in question. Platform engineering creates abstract environments ready
for developers to start developing top-notch applications right away without worrying about the
underlying platform and architecture.

Let us now delve into a practical illustration of these principles: a detailed exploration of Netflix’s
strategic transformation, which epitomizes the remarkable potential of platform engineering when
executed with vision and precision.

Case study – Netflix’s strategic shift in platform engineering

Netflix’s transformation to a cloud-native powerhouse is a prime example of platform engineering’s
evolution. Initially constrained by scalability and reliability limitations, its shift to a cloud-native
model, predominantly utilizing Amazon Web Services (AWS), marked a pivotal change in service
delivery mechanisms. This move was characterized by the following:

• Microservices architecture: Transitioning from a monolithic framework to microservices,
Netflix achieved modular scalability and expedited development, enabling distinct services to
evolve independently

• Embracing AWS: The choice of AWS provided the elastic infrastructure necessary to support
Netflix’s global expansion and handle varying loads with ease

• Commitment to automation and continuous integration/continuous deployment (CI/CD):
Automating its deployment processes, Netflix’s CI/CD pipeline facilitated frequent and reliable
updates, vital for managing multiple deployments daily

• Containerization with Kubernetes: Adopting Kubernetes for container orchestration, Netflix
streamlined service deployment and scaling, enhancing operational efficiency

• Focus on resilience and reliability: Through chaos engineering, Netflix ensured its platform
could withstand disruptions, maintaining high availability (HA) and a consistent user experience

Through these strategic moves, Netflix not only overcame its initial challenges but also set a new
standard in cloud-native platform engineering, demonstrating how such an approach can lead to
unprecedented scalability and operational agility.

The rise of immutable infrastructure and its implications
Immutable infrastructure is redefining the landscape of cloud-native environments by introducing
an approach where once deployed, components remain unchanged; alterations require the deployment
of new instances. This shift toward immutability offers several significant benefits:

• Consistency and reliability: This approach ensures that the infrastructure remains consistent
across different environments, from development to production. It effectively addresses the
common challenge of discrepancies between environments, often summed up as the “it works

Future-Proofing Your Cloud Computing Skills216

on my machine” problem. Immutable infrastructure achieves uniformity that is particularly
beneficial in multi-cloud and complex distributed setups.

• Enhanced security: Immutable infrastructure naturally prevents configuration drift – the gradual
deviation of system configurations over time. Locking down the state of components once
deployed reduces the risk of unauthorized changes, thus enhancing the overall security posture.

• Streamlined management and operations: Managing updates and changes becomes more
straightforward with immutable infrastructure. Since new changes require deploying new
versions rather than modifying existing ones, this approach simplifies version control and
reduces the complexities associated with traditional configuration management.

Having outlined the overarching advantages of immutable infrastructure, we will now examine Spotify’s
strategic implementation of this paradigm, illustrating the tangible impacts such an approach has on
operational resilience and service delivery.

Spotify’s immutable infrastructure strategy

Spotify’s approach to immutable infrastructure, utilizing Docker and Google Cloud Platform (GCP),
showcases the benefits of this model. In an immutable setup, instead of modifying existing servers for
updates or changes, new containerized instances are deployed. This strategy minimizes deployment
errors and system downtime. Each update results in a new container deployment, ensuring consistency
and reliability in the environment. Old containers can be easily rolled back if needed, enhancing
operational stability. This method also contributes to a better user experience, as it reduces the
likelihood of service disruptions due to deployment issues. Spotify’s case exemplifies how immutable
infrastructure can lead to improved efficiency and reliability in digital services.

Advanced orchestration in multi-cloud landscapes

In the realm of multi-cloud strategies, advanced orchestration is not merely a requirement but a
necessity. It’s about orchestrating an entire ecosystem of services, applications, and infrastructure
across diverse cloud environments. This orchestration transcends resource management; it involves
automating deployment, scaling, and application management in a manner that is both efficient and
resilient. It demands a profound understanding of each cloud environment’s intricacies and the ability
to weave these into a unified, functional system. Such orchestration is pivotal in harnessing the full
potential of multi-cloud strategies, enabling businesses to leverage the strengths of each cloud service
while maintaining overarching control and visibility.

Building on the foundation of advanced orchestration, let’s turn our focus to Adobe, a company that
exemplifies orchestration excellence in its deployment across multi-cloud platforms, leveraging a
blend of AWS and Azure to drive innovation and operational efficiency.

Introduction to AI and ML in cloud-native evolution 217

Adobe’s orchestration mastery

Adobe’s orchestration mastery in its Creative Cloud services is a prime example of advanced
orchestration in a multi-cloud environment. By leveraging both AWS and Microsoft Azure, Adobe
employs sophisticated orchestration tools to manage its wide array of services seamlessly across these
platforms. This approach is instrumental in ensuring HA, enabling smooth and uninterrupted updates,
and maintaining consistent performance regardless of the cloud provider. The advanced orchestration
tools used by Adobe facilitate efficient resource management, automate deployment processes, and
optimize load balancing, demonstrating the effectiveness of sophisticated orchestration in managing
complex, multi-cloud infrastructures.

Looking forward, the trajectory of cloud-native platforms is unmistakably toward more integrated,
automated, and secure environments. The evolution of platform engineering, the shift toward immutable
infrastructure, and the imperative of advanced orchestration in multi-cloud scenarios are not mere
technological trends. They represent a fundamental shift in our approach to IT strategy and business
innovation, heralding a new era of efficiency, agility, and security in the cloud-native landscape.

Introduction to AI and ML in cloud-native evolution
AI and ML significantly enhances the cloud-native ecosystem. AI brings smart automation, advanced
data analytics, and new capabilities for handling complex tasks, fostering smarter decision-making
and operational efficiency. ML algorithms analyze vast cloud datasets to predict trends, automate
responses, and personalize user experiences. Together, they enable more resilient, self-optimizing
cloud services that can preemptively address issues, optimize resources, and evolve with user demands,
driving the evolution of cloud-native solutions toward more intelligent, adaptive, and autonomous
systems. Recent generative AI (GenAI), in particular, has the potential to revolutionize aspects
such as database management, UI design, and complex architectural decisions, truly embodying the
innovative spirit of cloud-native evolution. With that said, next, we will explore an interesting topic
on the futuristic possibilities of application modernization. Application modernization is all about
how you transform your legacy application into a modern cloud-native application.

Modernizing applications with GenAI

The integration of GenAI into cloud-native development will revolutionize application modernization.
Currently, it is achieved by having a mix of tools, frameworks, and best practices (such as manually
following the cloud-native patterns and principles – 12-15 factors covered in Chapter 2, Building the
Backbone of Cloud-Native Applications, of this book). This process involved manual code refactoring,
transitioning from monolithic structures to microservices, and manual deployment and scaling, all
of which were time-intensive and complex.

As we move forward, GenAI transforms this landscape by automating code refactoring, streamlining
the transition to microservices, enabling AI-driven deployment and scaling, and enhancing monitoring
and maintenance. This evolution significantly simplifies the modernization process, reducing technical

Future-Proofing Your Cloud Computing Skills218

overhead and introducing more efficient methods for updating applications. Let’s delve into how this
could be handled in green- and brownfield environments when it comes to application modernization.

Streamlining application modernization – brownfield

In transforming existing applications (so-called brownfield) with the support of AI to meet modern
demands, key steps include harnessing automated code refactoring and embracing the shift to
microservices, all facilitated by the power of GenAI. Let’s explore these transformative processes next:

• Automated code refactoring: One of the most significant ways GenAI simplifies application
modernization is through automated code refactoring. AI tools can analyze legacy code bases
and suggest or even implement improvements and modernization strategies. This includes
optimizing code for cloud-native environments, ensuring compatibility with modern APIs,
and enhancing scalability and performance.

• Migration to microservices: GenAI aids in the decomposition of monolithic applications
into microservices. By analyzing the existing application structure, AI can suggest the most
efficient way to break down the application into smaller, independently deployable services, a
key aspect of cloud-native architectures.

Example – Modernizing a legacy e-commerce application

To illustrate the transformative power of GenAI in modernizing legacy systems, let’s consider the case
of a legacy e-commerce platform. The following example will showcase the step-by-step process of
automated code refactoring, highlighting how each phase contributes to enhancing the application’s
performance and preparing it for a seamless transition to a cloud-native architecture:

• Automated code refactoring with GenAI:

 � Initial analysis: Leveraging GenAI in application modernization begins by analyzing the
entire code base of the e-commerce application. It identifies areas where the code can be
optimized for a cloud-native environment. For instance, it might find that certain parts of
the code are causing performance bottlenecks.

 � Suggesting refactoring: For example, it might recommend altering the way database
queries are handled to improve efficiency or adopting asynchronous processing for handling
user requests.

 � Implementing changes: Once the refactorings are approved by the development team, the
AI tool can assist or even automate the process of rewriting parts of the code. This process
is done iteratively and in alignment with the best practices of cloud-native development.

Introduction to AI and ML in cloud-native evolution 219

• Migration to microservices:

 � Service identification: GenAI models can help analyze the monolithic architecture to
identify logical service boundaries. For instance, it might suggest separating user account
management, product catalog management, and order processing into distinct services.

 � Microservices design: For each identified service, the AI tool proposes a design that includes
how the service will communicate with others, its database schema, and its deployment
requirements. It ensures that each service is loosely coupled and independently deployable.

 � Assisting in deployment: Once we have all the details, with the help of a GenAI model,
it becomes easier to generate containerization scripts and Kubernetes manifests for each
microservice. It also suggests an incremental deployment strategy, where services are deployed
one at a time to minimize disruption.

• Outcome:

The legacy e-commerce application is successfully transformed to a cloud-native application and
into a set of microservices. Each service can be scaled independently, making the application
more resilient and easier to manage. The application now efficiently utilizes cloud resources,
and new features can be deployed faster and more safely.

This example demonstrates how GenAI can significantly simplify the process of modernizing legacy
applications. By automating code refactoring and aiding in the migration to a microservices architecture,
GenAI enables businesses to leverage the full potential of cloud-native technologies, leading to
applications that are more scalable, maintainable, and aligned with modern development practices.

Revolutionizing the development life cycle – greenfield

In the greenfield approach, GenAI is a game-changer at every step of the development life cycle, from
conception to coding. Here’s how it’s making a difference:

• Conceptualization and design: GenAI is already changing the initial stages of application
development. For instance, when designing a new application, developers can now use AI
to generate initial design concepts or UI mockups based on specified criteria. This capability
accelerates the design process and offers a range of creative options that might not have been
considered otherwise.

• Code generation and optimization: In the coding phase, AI tools can write boilerplate code,
suggest optimizations, and even refactor existing code to improve efficiency and performance.
For example, a developer working on a cloud-based analytics tool can use AI assistants such as
Microsoft Copilot, Google Duet AI, and Amazon Q to generate initial code for data processing
algorithms, significantly speeding up the development process.

• Automated deployment: GenAI can also assist in the deployment phase. It can analyze the
application requirements and automatically generate deployment scripts for various cloud

Future-Proofing Your Cloud Computing Skills220

environments, ensuring optimal configuration and resource allocation. For instance, an AI tool
could generate Kubernetes manifests for deploying a microservices-based application, ensuring
that each service is properly configured and ready for deployment. We will delve deep into how
cloud-native platforms have become a foundational pillar for GenAI.

• Ongoing maintenance and updates: In the maintenance phase, AI can continuously monitor
the application, suggest performance improvements, and even predict potential issues before
they occur. This proactive approach to maintenance helps keep the application running smoothly
and efficiently. We will be covering this in the upcoming AI for IT Operations (AIOps) topic
in detail.

• Co-piloting application development: GenAI will become the co-pilot in application development,
especially when modernizing existing applications. It can suggest code improvements, troubleshoot
issues, and propose alternative methodologies, thereby enhancing the development process.
This collaboration can significantly reduce development time and improve the quality of the
final product.

• Balancing AI contributions with developer expertise: While GenAI can accelerate development,
it’s essential to balance its contributions with human expertise. Developers need to critically
evaluate AI-generated suggestions and ensure they align with the application’s goals and
technical requirements. This balance ensures that the final application is not only innovative
but also functional, reliable, and aligned with business objectives.

Example – Developing a new social media platform

Imagine the inception of a new social media platform designed to provide innovative interaction
methods with a focus on privacy and user-generated content. This greenfield project leverages GenAI
to streamline the development process, ensuring a modern, scalable, and feature-rich application
built from the ground up:

• Conception and initial design aided by GenAI:

 � Idea generation: GenAI begins by assisting in brainstorming sessions and providing creative
concepts for the social media platform based on current market trends and user preference.

 � Design mockups: Utilizing AI-driven design tools, the team quickly creates a series of UI
mockups, which are iteratively refined to ensure an intuitive user experience.

 � Feature planning: The AI system suggests a list of potential features and functionalities
that could give the platform a competitive edge, such as advanced content recommendation
engines or privacy-preserving algorithms

• Automated code generation and optimization:

 � Code prototyping: The AI tool rapidly prototypes the foundational code for the platform,
adhering to cloud-native principles and ensuring readiness for a microservices architecture

Introduction to AI and ML in cloud-native evolution 221

 � Code review and optimization: As the prototype takes shape, the AI continuously analyzes
and refactors the code to enhance performance, maintainability, and scalability

 � Optimization for deployment: GenAI aligns the code base with deployment best practices,
preparing for containerization and orchestration within a Kubernetes environment

• Building and deployment:

 � Microservices architecture: The AI system suggests an optimal microservices breakdown,
such as separating user profile management, content delivery, and messaging functionalities

 � Deployment strategy: For each microservice, GenAI generates deployment manifests and
suggests a phased rollout plan to ensure a smooth launch with minimal risk

• Outcome:

The result is a modern social media application, architected with a microservices design that
enables scalability and rapid feature development. The platform is cloud-native from the onset,
with each component designed to operate independently, ensuring HA and a robust user
experience. The social media platform launches successfully, with the ability to quickly adapt
to user feedback and market changes, underpinned by the flexible and scalable infrastructure
that GenAI helped create.

This greenfield example showcases the potential of GenAI to not only facilitate the creation of
innovative applications but also to establish a solid foundation for future growth and adaptability in
the cloud-native era.

The cloud-native platform becomes a foundational pillar for
GenAI

In the preceding topics, we covered how AI will accelerate developers; now, let’s shift our focus to
platform engineers. To start with, it’s becoming increasingly clear that cloud-native technologies,
particularly Kubernetes, are becoming the foundational infrastructure for hosting and managing
GenAI models. This synergy is poised to redefine how AI models are developed, deployed, and scaled,
offering unprecedented efficiency and flexibility. In this section, we will explore how Kubernetes
optimally supports the demands of GenAI and examine new tools that enhance GenAI within the
cloud. Then, we will shift gears to investigate the role of AI in managing complex cloud architectures
and its impact on cloud-native innovation.

Kubernetes – the preferred environment for GenAI

Today, Kubernetes has emerged as the go-to environment for GenAI models. Its ability to handle
complex, scalable, and distributed systems makes it ideal for the demands of GenAI. Major players in
the AI field, such as Hugging Face, OpenAI, and Google, are already leveraging Kubernetes-powered
cloud-native infrastructures to deliver robust and scalable AI platforms.

Future-Proofing Your Cloud Computing Skills222

Advantages of Kubernetes

The use of Kubernetes offers numerous benefits for GenAI applications, including improved resource
management, scalability, and the ability to handle the high computational demands of AI model
training and inference. This environment also provides the resilience and reliability needed for critical
AI applications. Let’s look into some of the advantages:

• Enhanced resource management: Kubernetes efficiently allocates resources to meet the
intensive computational demands of AI model training and inference

• Scalability: It allows GenAI applications to scale resources up or down as needed, providing
flexibility to handle variable workloads

• High computational handling: Kubernetes is adept at managing the heavy computational
loads associated with GenAI applications, ensuring smooth operations

• Resilience and reliability: The platform is designed for HA, offering robust failover capabilities
essential for mission-critical AI applications

• Automated rollouts and rollbacks: Kubernetes can automate the deployment process,
implementing updates and changes without downtime

Emerging tools and platforms in the cloud-native ecosystem

Here, we will learn about some tools and platforms to enhance GenAI within the cloud:

• Innovative tools for GenAI: Today, tools such as Hugging Face’s Text Generation Inference,
AnyScale’s Ray Serve, and vLLM are at the forefront of running model inference within
containerized environments. These tools are designed to optimize the performance of AI models
while ensuring they can be easily deployed and managed within a cloud-native infrastructure.

• Maturation of frameworks and platforms: In the coming years, we can anticipate a significant
maturation in the frameworks, tools, and platforms designed for Kubernetes, specifically tailored
for managing the life cycle of foundation models in GenAI. This development will enable users
to pre-train, fine-tune, deploy, and scale generative models with unprecedented efficiency.

Navigating advanced architectures with AI assistance

Let’s understand how GenAI can help in advanced architecture:

• Exploring serverless computing: GenAI is also making strides in guiding both developers and
platform engineers through more advanced cloud-native concepts such as serverless computing.
It provides insights and code suggestions for building serverless applications, enabling developers
to explore this efficient and scalable architecture. This guidance is particularly valuable for
anyone who is transitioning from traditional server-based architectures to serverless models.
We will be touching on the details of serverless in the next topic of this chapter, so stay tuned.

Introduction to AI and ML in cloud-native evolution 223

• Adapting to technical capabilities: While AI can suggest cutting-edge solutions, it’s important
to align these suggestions with the technical capabilities and understanding of the development
team. For instance, a team new to cloud-native concepts might find it more practical to start
with managed databases and application servers before progressing to serverless architectures.

Futuristic outlook of GenAI in cloud-native development

Looking ahead, the role of GenAI in cloud-native development is poised to become even more
significant. We can anticipate the following:

• Reference architectures and best practices: Key players in the cloud-native ecosystem will
likely introduce reference architectures, best practices, and optimizations specifically for running
GenAI on cloud-native infrastructure. This guidance will be crucial for organizations looking
to harness the power of GenAI within their cloud-native environments.

• Extension of Large Language Model Operations (LLMOps): LLMOps, which focuses on
the operational aspects of large language models (LLMs), will evolve to support integrated
cloud-native workflows. This evolution will encompass the entire spectrum of model life-cycle
management, from development to deployment, ensuring that GenAI models are not only
powerful but also seamlessly integrated into the cloud-native ecosystem.

• Advanced predictive capabilities: Future GenAI tools will offer advanced predictive capabilities,
not only in terms of code generation but also in predicting market trends and user preferences.
This will enable developers to create applications that are not only technically sound but also
closely aligned with user needs and market demands.

• Seamless integration across development phases: GenAI will become more seamlessly
integrated into all phases of the development life cycle, from initial design to deployment and
maintenance. This integration will ensure a more cohesive and efficient development process.

• Enhanced collaboration between AI and developers: The future will see a more enhanced
collaboration between GenAI and human developers. AI will not only assist in technical aspects
but also in creative processes, bringing a new level of innovation to application development.

The integration of GenAI into cloud-native development is setting the stage for a new era in application
development. With its ability to enhance every phase of the development life cycle, GenAI is not just
a tool but a transformative force, driving efficiency, innovation, and creativity in the cloud-native
ecosystem. As we look to the future, it’s clear that GenAI will play a pivotal role in shaping the next
generation of cloud-native applications, making them more adaptive, efficient, and aligned with
evolving business and user needs.

As GenAI redefines the landscape of cloud-native application development, it seamlessly paves the
way for the integration of ML, another transformative technology. This integration marks a natural
progression from AI-driven innovation to ML-powered management and optimization. Let’s get into
the details next.

Future-Proofing Your Cloud Computing Skills224

ML – a pivotal tool in advanced cloud-native application
management

ML will become an indispensable tool in the management of next-generation cloud-native applications.
Its role extends far beyond mere responsiveness to immediate changes; it can delve into the realms of
predictive analytics and proactive system adaptation. In the diverse and complex world of multi-cloud
environments, the predictive prowess of ML is proving to be invaluable.

Predictive analytics and proactive adaptation

Let’s understand how ML can be used for predictive and proactive approaches:

• Anticipating future demands: In multi-cloud environments, where resource demands can
fluctuate unpredictably, ML’s ability to forecast future needs is crucial. By analyzing historical
data and current trends, ML algorithms can predict upcoming demands, allowing systems
to adjust resources proactively. This foresight ensures that applications maintain optimal
performance, even under varying load conditions.

• Adapting to user behavior: ML algorithms excel at detecting and adapting to changes in user
behavior. By continuously analyzing user interaction patterns, these algorithms can optimize
application performance and resource allocation in real time, ensuring a seamless user experience.

Efficiency and resource optimization

Now, let’s see how ML can be used for efficiency and resource optimization:

• Forecasting resource requirements: One of the key strengths of ML in cloud-native management
is its ability to forecast resource requirements accurately. This capability allows for more efficient
use of cloud resources, reducing waste and cost. For instance, an ML algorithm can predict peak
usage times for an application and scale resources accordingly, ensuring that the application
runs efficiently without over-provisioning.

• Maintaining operational efficiency: ML algorithms play a critical role in maintaining the
efficiency of cloud-native applications. They can identify inefficiencies in the system, such as
underutilized resources or bottlenecks, and suggest adjustments to improve overall performance.

ML in multi-cloud infrastructure management

ML plays a pivotal role in taming the complexities and enhancing the agility of multi-cloud infrastructure,
enabling smarter management and dynamic allocation of resources. Let’s understand this further:

• Complexity management: The management of multi-cloud infrastructures is inherently
complex, with each cloud environment having its own set of characteristics and challenges.
ML algorithms can analyze data from these varied environments to provide a unified view of
the infrastructure, simplifying management and decision-making.

Introduction to AI and ML in cloud-native evolution 225

• Dynamic resource allocation: In multi-cloud environments, dynamic resource allocation
becomes essential. ML algorithms can automate this process, continuously analyzing workload
and performance data to allocate resources where they are most needed.

The following table sheds light on some of the key distinctions between AI and ML:

Aspect AI ML

Data requirements Diverse data volumes Large quantities of data points

Expected outputs Ranges from insights and advice
to decisions

Quantitative outputs such as scores
or labels

Operational mechanism Designed to emulate human
reasoning with precision

Relies on statistical models that
learn and infer from patterns in data

Management needs Requires human supervision for
optimal functionality

Directed by data experts to refine
and interpret model findings

Table 10.1 – AI versus ML

As we witness the transformative impact of GenAI in enhancing the development life cycle of cloud-
native applications, and ML streamlining multi-cloud infrastructure management, we are led to the
next evolutionary juncture in cloud computing. This progression naturally culminates in the integration
of predictive analytics with AIOps, a synergy that signifies a major advancement in the management
and optimization of cloud resources. This integration not only complements the capabilities brought
forth by GenAI and ML but also elevates the operational intelligence of cloud systems to new heights.

Predictive analytics and AIOps – redefining cloud resource
management

The integration of predictive analytics with AIOps is the transformation of cloud management. By
utilizing AI, cloud-native systems gain the capability to not just react to current issues but also foresee
and address future problems. This shift empowers cloud environments to become more resilient, efficient,
and self-managing, significantly enhancing operational intelligence. Predictive analytics enables the
anticipation of system needs and optimization of resources, while AIOps evolves into more than just
a maintenance tool – it becomes an active agent in continually improving system performance and
stability, ushering in a new era of advanced and proactive cloud management.

To have a comprehensive image of AIOps, let’s have a look at the following diagram:

Future-Proofing Your Cloud Computing Skills226

Figure 10.1 – Components of AIOps

Understanding the data life cycle and its pivotal role in AIOps is crucial for optimizing cloud management
strategies. Let’s examine the key stages, from data collection to actionable insights:

1. Historical and real-time data analysis: This is data that has been collected from the IT
infrastructure over time. AIOps tools can use historical and real-time data to identify patterns
and trends and to make predictions about future events.

2. Anomaly detection: After analyzing the data, the AI algorithm is able to identify unusual
events or deviations from the established norms, indicating potential issues.

3. Performance analysis: This involves evaluating various metrics to assess the system’s efficiency
and identify areas for improvement.

4. Correlation and contextualization: Identify the main cause of issues and provide context
for insights.

5. Optimization suggestions: Based on the analysis, the system recommends actions to improve
system performance and prevent future problems.

6. Task automation: Closing the cycle, automation is the ability of AIOps to automate routine
tasks, such as provisioning resources, resolving minor issues, and deploying updates.

Now, let’s get into predictions on AI and ML and how they may influence cloud-native development
in the coming years.

Introduction to AI and ML in cloud-native evolution 227

Predictions for AI and ML in cloud-native development

As we stand on the precipice of technological evolution, it’s pivotal to forecast the profound influences
AI and ML are poised to imprint on cloud-native development. This contemplation is not merely
speculative; it’s a foresight grounded in the rapid advancement we’re witnessing today:

• Automated code generation: The dawn of AI in coding heralds a new epoch where the
creation of code transcends human speed and accuracy, streamlining deployment cycles and
diminishing the margin for error

• Advanced security postures: In the ceaseless battle against cyber threats, AI and ML emerge
as sentinels, offering unprecedented real-time vigilance that will bolster the fortifications of
cloud-native landscapes

• Personalized user experiences: AI’s proficiency in distilling insights from user behavior
promises to revolutionize the user experience, curating interactions that are as unique as the
individual at the keyboard

• Resource usage optimization: ML stands as the steward of efficiency, ensuring resources are
wielded with prudence that translates into tangible economic and operational benefits

• Proactive system maintenance: With predictive intelligence, AI is set to transform maintenance
from a reactive to a proactive stance, ensuring the smoothest of sails in the often-turbulent
digital seas

Strategic recommendations for embracing AI and ML in cloud-native
development

The integration of AI and ML within the cloud-native paradigm isn’t merely a technical upgrade–it’s
a strategic revolution. To navigate this transition, businesses must adopt a multifaceted strategy that
interweaves technical acumen with visionary foresight. The recommendations are set out here:

• Cultivate specialized AI talent: Develop a robust talent pipeline by recruiting and nurturing
a dedicated team of AI specialists, including data scientists, ML engineers, and AI architects.
Prioritize continuous learning and development to stay ahead of the AI curve.

• Data as a strategic keystone: Elevate data to a core strategic asset by enhancing its quality,
accessibility, and governance. Implement robust data management practices that enable
seamless data flow and analytics, paving the way for informed decision-making and innovative
AI applications.

• Pilot with high-impact use cases: Begin with targeted AI initiatives that promise a high return
on investment (ROI). Focus on specific, measurable goals to demonstrate value and build
momentum for wider AI adoption across the enterprise.

• Foster an AI-inclusive culture: Encourage an organizational culture that embraces AI, promoting
cross-functional collaboration and proactive engagement with AI tools and methodologies.

Future-Proofing Your Cloud Computing Skills228

• Invest in scalable AI infrastructure: Ensure that the technical infrastructure—computational
power, storage, and networking—is scalable and flexible to support the growing demands of
AI algorithms and large datasets.

• Adopt AI-driven development practices: Integrate AI into the software development life
cycle (SDLC), from automated testing and code generation to deployment and monitoring,
to enhance efficiency and reduce time-to-market (TTM).

• Ensure ethical AI adoption: Establish clear guidelines and ethical frameworks to guide the
responsible use of AI, ensuring that AI systems are transparent, fair, and accountable.

By adhering to these strategic recommendations, organizations can forge a path toward a future where
cloud-native development is synonymous with intelligent, adaptive, and highly responsive systems.
The aim is not just to deploy AI but to embed it into the very fabric of the organization’s cloud-native
architecture, creating systems that are not only technologically advanced but also aligned with the
broader business vision.

The emergence of serverless architecture and EDA
In this section, let’s explore the genesis and growth of Function as a Service (FaaS) as a cornerstone
of this shift, charting its impact on the cloud-native ecosystem and its symbiotic relationship with
the latest advances in AI and ML.

The evolution and future of FaaS in cloud-native ecosystems

FaaS, a cornerstone of serverless computing, marks a pivotal shift in cloud-native ecosystems. It simplifies
cloud architecture by abstracting server and infrastructure management, empowering developers to
concentrate on discrete functions within their applications. This evolution signifies a move toward
greater agility and scalability in application development. By enabling on-demand resource utilization,
FaaS offers a more cost-effective model, only incurring costs for the actual execution time of functions.
As the future unfolds, FaaS is expected to streamline cloud application development further, fostering
innovations in how software is constructed, deployed, and scaled in cloud environments.

FaaS revolves around a series of principles to leverage its agility and cost-effectiveness. FaaS goes
hand in hand with the microservices architecture, benefiting from its distributed and granular nature,
allowing cloud-native applications to become decentralized processing units. FaaS is event-driven, an
architecture we explored in detail in Chapter 3, Designing for Diversity with Multi-Cloud Application
Strategies, meaning that functions can be triggered upon defined computer events. FaaS is then, by
nature, cost-effective, as most FaaS providers facilitate pay-per-use billing systems, instantly removing
the risk of over-provisioning cloud resources.

The emergence of serverless architecture and EDA 229

The future outlook

Looking ahead, FaaS is poised to become more integrated with AI and ML, enabling even more
dynamic and intelligent cloud-native applications. We can anticipate advancements in FaaS that will
further reduce latency, enhance performance, and offer more granular scalability options.

Real-time processing and IoT integration in multi-cloud
environments

The combination of serverless architectures and the Internet of Things (IoT) in multi-cloud environments
is revolutionizing how data is processed and analyzed. In this setup, serverless computing allows for
flexible, on-demand processing of IoT-generated data. This means that data can be processed closer
to where it’s generated (at the edge), facilitating real-time analytics and responses. Such an approach
is particularly beneficial for IoT applications requiring rapid decision-making, such as in smart city
infrastructure or real-time monitoring systems. This integration represents a significant advancement
in cloud computing, offering efficient, scalable, and timely data processing solutions.

Example

A notable example is the use of AWS Lambda for processing data from IoT sensors in real time.
This setup allows for immediate data analysis and response, crucial in scenarios such as smart city
infrastructure management, where real-time data processing is essential for traffic control, environmental
monitoring, and emergency response.

Case studies of serverless architectures in large-scale
applications

Serverless architectures benefit from the provision of ready-to-use servers by cloud providers who
guarantee the maintenance and scalability of the underlying infrastructure. Developers can then
containerize their applications and ship them to the cloud provider. Serverless architectures have
been successfully implemented in large-scale applications, showcasing their scalability and efficiency.

Let’s delve into real-world applications and explore how serverless architectures are not just theoretical
concepts but practical solutions driving efficiency and innovation in well-known enterprises.

Example 1 – Netflix’s serverless video encoding system

Netflix’s video encoding system is a prime example of serverless architecture in action. By leveraging
AWS Lambda, Netflix efficiently manages the encoding of thousands of hours of content, scaling
resources up or down based on demand. This approach not only optimizes resource utilization but
also accelerates the content delivery process.

Future-Proofing Your Cloud Computing Skills230

References
Blog post: Scaling video encoding with serverless functions on AWS: https://dashbird.
io/blog/serverless-case-study-netflix/

White paper: Building a highly scalable video encoding infrastructure at Netflix: https://
netflixtechblog.com/tagged/video-encoding

Example 2 – Coca-Cola’s serverless vending machine solutions

Coca-Cola implemented serverless technology to manage its vending machines’ operations. Using
Google Cloud’s serverless platform, it can monitor and analyze data from machines worldwide in real
time, optimizing restocking and maintenance operations.

The emergence of serverless architecture and EDA is revolutionizing cloud-native and multi-cloud
environments. From the evolution of FaaS to the integration of real-time processing with IoT and
the implementation in large-scale applications, these architectures are setting new standards for
efficiency, scalability, and innovation in the cloud computing landscape. As we continue to explore
these technologies, we are not just witnessing an evolution; we are part of a transformative movement
that is reshaping the future of cloud computing.

References
Google Cloud Functions overview: https://cloud.google.com/functions

Case study: Coca-Cola optimizes operations with Google Cloud Functions: https://
dashbird.io/blog/serverless-case-study-coca-cola/

Advanced security paradigms for cloud-native
applications
In an era where boundaries are no longer defined by physical infrastructures, the paradigm of
security is undergoing a radical transformation. Enter Zero Trust architecture – a model that
fundamentally disrupts conventional security frameworks and fortifies the resilience of cloud-native
and multi-cloud environments.

Reimagining security – the advent of Zero Trust in multi-cloud
environments

The adoption of Zero Trust architectures in cloud-native and multi-cloud environments is revolutionizing
security measures. This approach, grounded in the principle of “never trust, always verify,” represents a
significant shift from traditional perimeter-centric security models. Zero Trust emphasizes continuous
verification of identity and privileges within a network rather than relying on static defenses. It requires
robust identity and access management (IAM), real-time monitoring, and granular control over access

https://dashbird.io/blog/serverless-case-study-netflix/
https://dashbird.io/blog/serverless-case-study-netflix/
https://netflixtechblog.com/tagged/video-encoding
https://netflixtechblog.com/tagged/video-encoding
https://cloud.google.com/functions
https://dashbird.io/blog/serverless-case-study-coca-cola/
https://dashbird.io/blog/serverless-case-study-coca-cola/

Advanced security paradigms for cloud-native applications 231

to resources. This model is particularly relevant in multi-cloud environments where the traditional
network perimeter is no longer applicable, making security a more dynamic and adaptive process.

If we observe closely the following diagram about Zero Trust architecture, we will see that it combines
many of the concepts discussed throughout the book. The Zero Trust architecture is a multi-layered
security approach for access control. The first layer is composed of policy-, role-, or attribute-based
access control (PBAC, RBAC, and ABAC, respectively), examined in detail in Chapter 5, Managing
Security, Data, and Compliance on Multi-Cloud, After that, IAM systems ensure authentication through
multi-factor authentication (MFA) and grant access to the authorized segment of data, services, or
other assets:

Figure 10.2 – Zero-Trust architecture

Innovative implementation – Zero Trust in a diverse cloud ecosystem

Imagine a scenario where an organization operates across AWS, Azure, and Google Cloud. In this
diverse ecosystem, Zero Trust architecture becomes not just a choice but a necessity. Every access
request, irrespective of its origin, undergoes rigorous authentication and authorization. Encryption
is omnipresent, ensuring data integrity and confidentiality. This meticulous approach to security is
particularly crucial in a multi-cloud setup, where the complexity and diversity of environments can
otherwise lead to inconsistent security postures.

Future-Proofing Your Cloud Computing Skills232

Harnessing AI and ML – the vanguard of cloud-native
cybersecurity

The integration of AI and ML into cloud-native cybersecurity is not just an enhancement; it’s a game-
changer. These technologies bring forth an unprecedented ability to analyze, learn, and predict from
vast datasets, offering a proactive shield against emerging cyber threats.

Let’s illustrate the transformative impact of AI and ML in cybersecurity with a practical scenario
that showcases how these technologies enhance threat intelligence (TI) and response across
cloud-native platforms.

Case in point – AI-powered TI and response

Envision a cloud-native application that spans multiple cloud platforms. Here, AI-driven systems
tirelessly monitor network traffic and user activities. They are adept at discerning patterns, identifying
anomalies that signal potential threats, and initiating swift, automated responses. This could range
from isolating a suspicious network segment to real-time alerts to security teams, thereby nipping
cyber threats in the bud.

Navigating future security frontiers in cloud-native ecosystems

As we peer into the horizon of cloud-native security, several key focus areas emerge, each presenting
its unique set of challenges and opportunities:

• Robust data privacy mechanisms: In an era where data is the new oil, ensuring its privacy
becomes paramount. Future cloud-native applications will need to embed more robust data
protection mechanisms, aligning with evolving global data privacy norms.

• Automated compliance frameworks: The complexity of cloud-native ecosystems necessitates
automated solutions for maintaining compliance with an ever-expanding tapestry of security
standards and regulations.

• Quantum-resistant cryptography: The dawn of QC heralds new threats to current cryptographic
standards. Future security paradigms must evolve to include quantum-resistant algorithms,
ensuring long-term data protection.

• Unified security orchestration: Managing security across a multi-cloud landscape demands a
unified approach. Future solutions will likely converge toward integrated security management
platforms, offering comprehensive visibility and control.

• Securing the edge: As cloud-native architectures increasingly intertwine with edge computing,
securing these distributed nodes becomes a critical imperative.

In essence, the future of cloud-native application security is not just about fortifying defenses but
about rethinking and reshaping these defenses to be more intelligent, adaptive, and integrated. As

Quantum computing (QC) and its impact on cloud technologies 233

we venture into this future, we are not just responding to threats; we are preemptively architecting a
more secure digital world.

With this comprehensive exploration of advanced security paradigms, we now turn our gaze to the
next section. Stay tuned as we unravel how this nascent yet powerful technology is set to redefine the
cloud computing ecosystem.

Quantum computing (QC) and its impact on cloud
technologies
As we stand at the vanguard of technological innovation, QC emerges as a trailblazer with the potential
to redefine the cloud computing landscape. This section will delve into how QC is poised to bring a
paradigm shift in data processing, offering unprecedented computational power and the promise of
solving complex problems that are currently beyond our grasp.

QC – revolutionizing the cloud landscape

The advent of QC will revolutionize the cloud computing landscape, representing a monumental leap
forward from classical computing. QC introduces principles of quantum mechanics into computing,
enabling the handling of complex problems at unprecedented speeds. This technology has the potential
to vastly enhance data processing capabilities in the cloud, offering novel solutions to challenges
that are currently insurmountable for classical computers. As QC continues to evolve, it’s poised to
redefine the future of cloud technology, opening new horizons for innovation and advanced problem-
solving in various fields. Let’s explore these groundbreaking advancements and what QC brings to
the cloud ecosystem:

• The quantum cloud – unleashing unprecedented power

Picture a cloud environment supercharged with QC capabilities. This quantum cloud will
be capable of tackling problems of immense complexity, far beyond the reach of traditional
computing methods. From optimizing global supply chains to unlocking mysteries in quantum
physics, the quantum cloud will open doors to new realms of possibilities.

• Quantum encryption – reinventing security in the cloud

Quantum encryption, rooted in quantum physics, is set to dramatically redefine security
in the cloud. It leverages quantum mechanics, particularly the concept of quantum key
distribution (QKD), to create encryption systems that are theoretically immune to traditional
hacking methods. Unlike classical encryption, which can potentially be cracked with enough
computational power, quantum encryption’s security is based on the fundamental laws of
physics, making it exceptionally robust. This paradigm shift in encryption technology could
provide unparalleled data protection in cloud environments, ensuring secure communication
and data storage even against emerging sophisticated cyber threats.

Future-Proofing Your Cloud Computing Skills234

• QKD – a new era of security

Imagine a cloud-native application that employs QKD. In this scenario, encryption keys are
transmitted using quantum states, which are inherently secure due to the laws of quantum
mechanics. Any attempt at interception changes these states, making eavesdropping detectable.
This quantum-enhanced security isn’t just an improvement; it’s a game-changer in protecting
sensitive data in the cloud.

Example of QC

Let us take an example. Consider the field of pharmaceutical research. Traditionally, simulating the
interaction of a new drug with various proteins requires vast amounts of computational power, often
running for days or weeks on classical computers. QC, with its ability to process complex calculations
at incredible speeds, can significantly reduce this time. This acceleration allows for quicker iterative
testing, potentially bringing life-saving drugs to market much faster.

Yet, QC isn’t always the go-to. For tasks such as web hosting or routine data analysis, classical cloud
services are more cost-effective and accessible. QC’s current high costs and specialized nature reserve
its use for high-stakes scenarios where its speed can be game-changing. This demonstrates a clear
example where QC’s unique capabilities are leveraged for maximum impact, while traditional computing
resources continue to handle the bulk of everyday processing tasks.

Navigating the quantum future in cloud computing

As we edge closer to integrating QC into cloud technologies, it’s crucial to prepare for this transformative
shift. This preparation involves several key strategies:

• Building quantum-ready infrastructure: Cloud providers need to start laying the groundwork
for QC by developing infrastructure that can integrate with quantum technologies as they mature.

• Cultivating quantum expertise: The rise of QC will demand a workforce skilled in quantum
technologies. Educational initiatives and training programs will be essential in cultivating this
new talent pool.

• Developing quantum-resistant cryptography: With QC’s potential to crack current cryptographic
methods, there’s an urgent need for quantum-resistant algorithms to protect data against future
quantum threats.

• Fostering collaborations: The complexity of quantum technologies calls for partnerships
between cloud providers, QC firms, and academia to drive innovation and practical applications.

• Addressing ethical and regulatory issues: QC introduces new challenges in data privacy and
security. It’s vital to establish ethical guidelines and regulatory frameworks to navigate these
issues responsibly.

Sustainable cloud computing – a new era 235

Strategic recommendations

As we stand on the brink of a quantum leap in cloud computing, it is imperative to chart a strategic course
that will harness this emerging power effectively. Here, we outline a set of strategic recommendations
designed to position organizations at the forefront of this technological revolution:

• Initiate quantum-ready algorithms: Organizations should begin experimenting with quantum-
inspired algorithms to gain early insights into the quantum advantage, setting the stage for
seamless integration when quantum supremacy becomes a practical reality.

• Quantum-resilient cybersecurity: It’s critical to proactively evolve cybersecurity measures
with quantum-resistant encryption methods, ensuring that data remains protected against the
unprecedented computational abilities of quantum machines.

• Cultivate quantum synergies: Building robust collaborations between established cloud service
providers (CSPs) and innovative QC start-ups through strategic partnerships and venture
capital investments will be essential. This will create a fertile ground for quantum innovations
to flourish within cloud ecosystems.

In essence, the fusion of QC with cloud technology is poised to revolutionize how we process information,
secure data, and solve complex problems. This convergence is not just a mere addition to the cloud
arsenal but a transformative force that will expand the horizons of what’s achievable, ushering in a
new epoch of computing that is profoundly capable, inherently secure, and brimming with untapped
potential. As we move toward this quantum-inclusive future, we do so with the understanding that
we are on the precipice of a computational renaissance.

Sustainable cloud computing – a new era
As we forge ahead into a future where technology intersects with ecological responsibility, sustainable
cloud computing – a new era is emerging as a guiding principle. This pivotal movement goes beyond
mere efficiency–it’s about integrating sustainability into the very fabric of cloud computing. This
section will shed light on how green computing is taking center stage in cloud-native development,
embodying an innovative fusion of technological advancement with environmental ethics.

Green computing – the heart of future cloud-native development

In the evolving landscape of cloud computing, green computing has transitioned from a niche
concern to a fundamental element in cloud-native development. This shift underscores the increasing
recognition of technology’s environmental impact and a resolute commitment to minimizing it. Green
computing in cloud-native development involves strategies such as optimizing server efficiency, using
renewable energy sources, designing energy-efficient software, and implementing environmentally
conscious policies. This approach not only addresses environmental concerns but also aligns with a
broader shift toward sustainable and responsible technology use, showcasing the tech industry’s role
in fostering a sustainable future.

Future-Proofing Your Cloud Computing Skills236

The eco-friendly cloud – balancing technology with sustainability

Envision a future where cloud-native applications are not only efficient and scalable but also
environmentally friendly. In this era, developers and companies prioritize eco-friendly practices,
such as optimizing resource usage and reducing waste. Green computing becomes an integral part
of the development life cycle, from design to deployment, ensuring that cloud-native applications
contribute positively to environmental sustainability.

Energy-efficient strategies in multi-cloud infrastructures

In multi-cloud infrastructures, energy efficiency emerges as a pivotal aspect of sustainable cloud
computing. As organizations utilize services from various cloud providers, the challenge is to harmonize
energy consumption across these platforms. This involves strategies such as using energy-efficient
hardware, optimizing data transfer and storage processes, and implementing software solutions that
minimize resource waste. Cloud providers are increasingly focusing on renewable energy sources and
more efficient data center designs to reduce the overall carbon footprint. For businesses, this shift
toward energy efficiency in multi-cloud environments not only supports sustainability goals but also
often leads to cost savings and enhanced system performance.

Innovative approaches to energy efficiency

Innovative approaches to energy efficiency in cloud computing include leveraging AI and ML to
optimize resource allocation and reduce power consumption. By analyzing usage patterns and predicting
demand, these systems can dynamically adjust the infrastructure, such as powering down unnecessary
servers during low-usage periods. Additionally, implementing more energy-efficient hardware and
transitioning to renewable energy sources helps minimize the carbon footprint. The combination of
smart software and sustainable hardware represents a powerful strategy for achieving eco-friendly
and cost-effective cloud operations.

Imagine multi-cloud infrastructures where AI and advanced analytics are used to monitor and
optimize energy consumption. These systems can intelligently distribute workloads across different
cloud environments based on energy efficiency, reducing the overall carbon footprint. Energy-efficient
cloud computing is not just about reducing costs; it’s about responsible resource utilization.

Remember – achieving carbon neutrality involves balancing emitted carbon with actions that remove
an equivalent amount of carbon from the atmosphere. It’s quantified by assessing emissions from all
sources related to cloud infrastructure and operations. Then, it involves investing in renewable energy,
efficiency technologies, or purchasing carbon credits to offset these emissions. In architecture, it drives
decisions toward greener technologies and energy sourcing, affecting both the operational footprint
and the end design of cloud services. It’s a measurable commitment to sustainability, beyond monetary
donations, impacting every architectural choice to favor eco-friendly alternatives.

Sustainable cloud computing – a new era 237

Case studies of sustainable practices in cloud computing

The journey toward sustainable cloud computing is already underway, with several companies leading
the charge through innovative practices.

Let’s examine the real-world embodiment of sustainable principles in the cloud sector, highlighting
trailblazing initiatives by industry leaders that exemplify commitment to eco-friendly technology
and operations.

Case study – Microsoft’s sustainability initiatives

Microsoft, for instance, has made significant strides in sustainable cloud computing. It has committed
to being carbon-negative by 2030 and is investing in renewable energy sources to power its data centers.
Microsoft’s Azure cloud platform incorporates sustainability in its operations, demonstrating that
environmental responsibility can go hand in hand with technological advancement.

For more details, you can check the following links:

• Environmental Sustainability Report: https://www.microsoft.com/en-us/
corporate-responsibility/sustainability/report

• Microsoft sustainability blog: https://www.microsoft.com/en-us/industry/
blog/sustainability/

• Microsoft Cloud for Sustainability: https://www.microsoft.com/en-us/
sustainability/cloud

Case study – Google Cloud’s carbon-neutral operations

Google Cloud has achieved carbon-neutral status for its global operations. By improving energy
efficiency in its data centers and investing in renewable energy, Google Cloud sets a benchmark
for sustainable cloud computing. Its commitment extends to helping customers track their carbon
footprint, making sustainability a shared goal.

For more details, you can check the following links:

• Environmental Report: https://sustainability.google/reports/

• Google Sustainability website: https://sustainability.google/

• Google Cloud sustainability: https://cloud.google.com/sustainability

https://www.microsoft.com/en-us/corporate-responsibility/sustainability/report
https://www.microsoft.com/en-us/corporate-responsibility/sustainability/report
https://www.microsoft.com/en-us/industry/blog/sustainability/
https://www.microsoft.com/en-us/industry/blog/sustainability/
https://www.microsoft.com/en-us/sustainability/cloud
https://www.microsoft.com/en-us/sustainability/cloud
https://sustainability.google/reports/
https://sustainability.google/
https://cloud.google.com/sustainability

Future-Proofing Your Cloud Computing Skills238

Strategic imperatives for a green cloud horizon

Organizations poised to pioneer in the era of green cloud computing must embrace a holistic strategy
that not only signals their environmental commitment but actively advances it. Here’s how they can
achieve this:

• Establish clear environmental objectives: Set ambitious yet achievable targets for carbon
emission reduction and renewable energy integration, creating a roadmap for the organization’s
sustainable transformation

• Benchmark carbon efficiency: Integrate carbon efficiency metrics into the core performance
indicators for cloud infrastructure and design, ensuring that every system iteration contributes
to the overall sustainability agenda

• Pursue sustainability credentials: Secure recognized sustainability certifications, underscoring
the organization’s dedication to environmental, social, and governance (ESG) excellence,
reinforcing trust and transparency with stakeholders

These tailored recommendations aim to guide organizations in aligning their cloud computing practices
with an environmentally conscious ethos that benefits not only the planet but also their operational
and corporate identity.

Embracing a sustainable future in cloud computing

As we move forward, sustainable cloud computing will become increasingly important. Green computing,
energy-efficient strategies, and a commitment to reducing environmental impact will be key drivers in
the evolution of cloud-native and multi-cloud technologies. This shift toward sustainability is not just an
ethical imperative; it’s a strategic and operational advantage. By embracing sustainable practices, cloud
computing can continue to grow and innovate in a way that is harmonious with our planet’s health.

Next, we will explore the convergence of edge computing with cloud-native, examining how this
integration is shaping the future of cloud computing and contributing to the development of more
efficient, responsive, and sustainable cloud architectures.

The convergence of telco and edge computing with cloud-
native
The integration of telecommunications and edge computing within cloud-native architectures is
spearheading a technological revolution. This nexus is unleashing a new paradigm where the advanced
capabilities of 5G networks are synergizing with edge computing to drive substantial gains in computing
efficiency and application performance in cloud-native environments.

The convergence of telco and edge computing with cloud-native 239

5G as a game-changer for edge-enhanced cloud applications

As we venture further into the future of cloud-native technologies, the convergence of telecommunications,
particularly 5G and beyond, with edge computing stands out as a transformative trend. This synergy
is poised to significantly enhance the capabilities of cloud-native applications, offering unprecedented
speed, reduced latency, and enhanced connectivity.

Imagine a world where 5G networks provide the backbone for edge computing, enabling cloud-native
applications to process data closer to the source. This integration allows for real-time data processing
and decision-making, essential in scenarios such as autonomous vehicles, smart cities, and IoT-driven
industries. The ultra-low latency and high bandwidth of 5G networks make it possible to leverage the
full potential of edge computing, leading to more responsive and efficient cloud-native applications.

Managing distributed data in multi-cloud and edge environments

In a landscape where cloud-native applications span across multi-cloud and edge environments,
managing distributed data becomes a critical challenge. The key lies in ensuring data consistency,
availability, and security across these dispersed environments.

Strategies for seamless data management

The following are some strategies for seamless data management:

• Implement distributed databases: Use databases designed for distributed systems to ensure
data integrity and accessibility across cloud and edge computing environments

• Synchronize data across environments: Employ advanced synchronization mechanisms that
facilitate real-time data consistency across all nodes

• Robust data governance: Develop and enforce stringent data governance policies that define
data ownership, access controls, and quality standards

• Strong encryption protocols: Apply strong encryption methods to safeguard data in transit
and at rest, ensuring that even if data is intercepted, it remains secure

• IAM: Integrate comprehensive identity management (IdM) protocols to control who has
access to what data, ensuring that only authorized entities can access sensitive information

• Automated backup and recovery: Establish automated backup processes and clear DR protocols
to protect against data loss and ensure quick restoration of services

• Monitoring and compliance tools: Utilize tools for continuous monitoring of data and
compliance with regulatory requirements, ensuring that data management practices meet
legal and policy standards

Future-Proofing Your Cloud Computing Skills240

Future trends in edge and cloud-native integrations

The integration of edge computing with cloud-native technologies is just beginning. Looking ahead,
several trends are likely to shape this integration further:

• AI-driven edge computing: The future will see more AI and ML models being deployed at the
edge, enabling smarter, context-aware applications that can process and analyze data locally.

• Autonomous edge management: As edge computing becomes more prevalent, there will be
a shift toward autonomous management of edge devices and applications, leveraging AI for
self-healing and self-optimizing systems.

• Interoperability and standardization: Ensuring interoperability between different cloud
providers and edge devices will be crucial. This may lead to the development of new standards
and protocols for edge computing.

• Sustainable edge computing: With the growing focus on sustainability, future edge computing
solutions will prioritize energy efficiency and reduce environmental impact.

• Edge as a Service (EaaS): The concept of EaaS will gain traction, where edge computing
capabilities are offered as a scalable service by cloud providers, much as with SaaS, PaaS, and
IaaS today.

The convergence of telco, particularly 5G and beyond, with edge computing marks a significant
evolution in the cloud-native landscape. This convergence is set to unlock new capabilities, enhance
application performance, and drive innovation in various sectors. As we embrace these advancements,
the future of cloud-native applications looks more distributed, intelligent, and efficient than ever before.

Next, we will understand the integration of blockchain with cloud-native development. Get ready to
explore how these two powerhouse technologies are merging to unlock unprecedented opportunities.

Blockchain integration with cloud-native development
Welcome to an insightful exploration of integrating blockchain technology with cloud-native development.
This combination opens new frontiers in building secure, efficient, and transparent applications. Let’s
delve into how this integration enhances cloud-native ecosystems and the challenges it presents.

Understanding blockchain in a cloud-native context

Blockchain, essentially a digital ledger distributed across a vast network, offers unique benefits when
integrated with cloud-native technologies. Each block in the blockchain contains a batch of transactions
linked to form a chain, ensuring data integrity and traceability. Let’s see some benefits of integrating
blockchain with cloud-native.

Blockchain integration with cloud-native development 241

Key benefits of blockchain integration

Some benefits include the following:

• Enhanced data security and privacy: Blockchain’s cryptographic security mechanisms add a
crucial layer of protection in cloud-native environments, safeguarding sensitive data against
unauthorized access and breaches

• Distributed and resilient architecture: The decentralized nature of blockchain complements
cloud-native architectures, enhancing fault tolerance (FT) and reducing single points of
failure (SPOFs), crucial for uninterrupted services

• Improved traceability and compliance: Blockchain’s immutable ledger is invaluable for tracking
transactions and data changes, aiding in regulatory compliance and ensuring data integrity

• Smart contract automation: Blockchain’s smart contracts automate processes in cloud-native
ecosystems, from resource management to business logic execution, enhancing efficiency
and consistency

• Interoperability and standardization: Blockchain fosters interoperability between different cloud
platforms, using standardized protocols for seamless interactions across diverse environments

Practical use cases and examples

Now, it is time you understand the use of blockchain technology with some examples and practical
use cases:

• Supply chain management (SCM) in cloud-native systems: In a cloud-native environment,
SCM applications can leverage blockchain for enhanced traceability and security.

For instance, a cloud-native application for pharmaceutical SCM can use blockchain to securely
record and track each step of a medicine’s journey. This ensures data integrity and transparency
across the supply chain, which is particularly important in distributed cloud environments
where data and services are spread across multiple locations.

• IAM in cloud-native applications: Blockchain can be integrated into cloud-native IAM solutions
to provide a more secure and decentralized approach to identity verification.

In cloud-native banking applications, blockchain can be used to create a tamper-proof,
decentralized ledger of customer identities. This enhances security and privacy, as blockchain’s
immutable nature makes it extremely difficult for identity data to be altered or stolen.

• Decentralized finance (DeFi) and cloud-native platforms: DeFi applications, built on blockchain,
align well with cloud-native principles such as scalability, resilience, and continuous delivery.

Cloud-native development allows DeFi applications to be scalable and highly available, catering
to a global user base. The decentralized nature of blockchain complements this by providing
a secure, transparent foundation for financial transactions without central intermediaries.

Future-Proofing Your Cloud Computing Skills242

Addressing challenges and considerations

In navigating the complexities of integrating blockchain with cloud-native architectures, we must
address several pivotal challenges and considerations. Let’s dissect these key areas to ensure successful
and efficient use cases:

• Technical complexity: Integrating blockchain with cloud-native architectures demands expertise
in both domains, ensuring effective interaction between blockchain networks, microservices,
and cloud-native tools such as Kubernetes.

• Scalability and performance: Balancing cloud-native scalability with blockchain’s transaction
processing speed is challenging, especially in public blockchains. Decisions on on-chain versus
off-chain data processing significantly impact performance and costs.

• Regulatory and legal aspects: Navigating the evolving regulatory landscape, especially concerning
data privacy and blockchain’s immutable, decentralized nature, is crucial for compliance.

By understanding these benefits, use cases, and challenges, we can appreciate the transformative
potential of blockchain integration in cloud-native development, paving the way for more secure,
efficient, and innovative digital solutions.

The future outlook

As blockchain and cloud-native development continue to mature, their integration will become
increasingly commonplace, fostering a new era of trust, transparency, and innovation in various
industries. By staying informed about the latest advancements and overcoming existing challenges,
we can unlock the full potential of this powerful combination.

Up next, we delve into the rise of LC/NC (Low-code and No-code) platforms for cloud-native
development. Discover how these intuitive platforms are revolutionizing application developments.

The rise of LC/NC platforms
LC/NC platforms are innovative software development tools designed to simplify and accelerate the
application development process. These platforms are revolutionizing the field of software engineering
by enabling individuals, even those with minimal or no coding experience, to build and deploy
applications efficiently. In this evolving landscape of cloud-native development, LC/NC platforms
are emerging as game-changers.

The rise of LC/NC platforms 243

LC/NC platforms in modern application developments

LC/NC platforms are increasingly playing a pivotal role in cloud-native development, offering a suite
of tools and capabilities that significantly enhance the development process in a cloud environment.
Here are some of their benefits:

• Empowering citizen developers in the cloud: LC/NC platforms empower citizen developers
– those with limited or no coding experience – to create and deploy cloud-based applications.
These platforms provide user-friendly, visual interfaces with drag-and-drop tools and pre-built
components, making it feasible for a broader range of users to contribute to cloud application
development. This democratization of development aligns perfectly with the cloud’s accessibility
and scalability.

• Accelerating cloud-native development speed: The pre-built modules and automation capabilities
of LC/NC platforms drastically reduce development time, a crucial advantage in the fast-paced
cloud-native ecosystem. These platforms enable rapid prototyping and deployment, allowing
businesses to swiftly adapt and respond to market demands and technological advancements
in the cloud.

• Fostering collaboration and agile development: Holistically, LC/NC platforms enhance
collaboration between technical and non-technical teams, breaking down traditional barriers.
This collaborative environment fosters agile development practices, encouraging faster iteration
cycles and continuous improvement – principles at the heart of cloud-native development.

• Cost-efficiency in cloud-native projects: By reducing reliance on extensive developer resources
and complex code bases, LC/NC platforms offer a cost-effective solution for application
developers. This aspect is particularly beneficial for organizations looking to leverage the cloud’s
capabilities without incurring substantial development and operational costs.

Challenges and considerations

The integration of LC/NC platforms in cloud-native development brings unique challenges and
considerations that need to be carefully addressed:

• Security and control in a cloud environment: In cloud-native development, security concerns
are paramount. While LC/NC platforms can expedite development, it’s crucial to thoroughly
assess their security features, especially when dealing with sensitive data in the cloud. Questions
about data encryption, user access control, and compliance with cloud security standards
become vital. Additionally, understanding the vendor’s track record in handling security in a
cloud context is essential to ensure enterprise-grade protection.

• Scalability and customization limitations: Cloud-native applications often require scalability
to handle varying workloads. While LC/NC platforms provide a level of scalability, they
may not always match the granular control and flexibility offered by traditional coding,
particularly for complex, large-scale cloud applications. Balancing the ease of use of LC/NC

Future-Proofing Your Cloud Computing Skills244

platforms with the need for advanced customization and scalability is a critical consideration
in cloud-native development.

• Integration with cloud ecosystems and existing systems: Seamless integration with existing
cloud services and legacy systems is another crucial factor. LC/NC platforms should be compatible
with the organization’s current cloud infrastructure, including various cloud services, APIs,
and microservices architectures. Ensuring that these platforms can easily connect with existing
databases, authentication systems, and other enterprise tools is essential for creating a cohesive
cloud-native ecosystem.

• Vendor lock-in and flexibility: Choosing an LC/NC platform often ties an organization to
a specific vendor’s ecosystem. This can lead to challenges in migrating to different platforms
in the future. Evaluating the flexibility of these platforms, including the ability to export and
import workflows and data, is important to avoid vendor lock-in, especially in a cloud-native
environment that values agility and adaptability.

Addressing these challenges and considerations is key to successfully leveraging LC/NC platforms
in cloud-native development, ensuring that they not only simplify the development process but also
align with the broader goals of cloud-native strategies.

The future outlook

LC/NC platforms are poised to become essential in streamlining the creation of modern softwares.

Also, the combination of generative AI and LC/NC platforms represents a significant leap forward
in democratizing technology and the cloud-native ecosystem. As these platforms become more
sophisticated, they will enable businesses of all sizes to harness the power of AI, creating more intelligent,
responsive, and efficient applications with ease. This synergy not only simplifies the development
process but also opens up new possibilities for innovation, making advanced technology accessible
to a broader audience.

As we embrace the simplicity and efficiency of LC/NC platforms, we also turn our attention to cloud-
native governance and compliance in the future. This next section will explore how evolving regulatory
landscapes and technological advancements are shaping governance and compliance strategies in the
dynamic world of cloud-native and multi-cloud environments.

Cloud-native governance and compliance in the future
As we advance, the lattice of governance and compliance will become increasingly intricate. This
section is poised to dissect forthcoming challenges and opportunities as we stride into an era where
regulatory landscapes are not just changing but converging with advanced technologies. We will delve
into the transformative strategies that organizations must embrace to stay compliant in a world where
data privacy laws, such as the General Data Protection Regulation (GDPR) and the California
Consumer Privacy Act (CCPA), dictate a new order of operational conduct and where AI and ML
become instrumental in navigating the complex currents of compliance management.

Cloud-native governance and compliance in the future 245

Navigating evolving regulatory landscapes

In the future, we can expect these regulations to become more complex and far-reaching, impacting
how cloud-native applications are developed, deployed, and managed. The key challenge will be to
stay agile and compliant amid these ever-changing regulatory demands.

Adapting to global data privacy laws

Consider the implications of global data privacy laws such as the GDPR in Europe or the CCPA in
California. Cloud-native applications will need to be designed with privacy and data protection at
their core, ensuring compliance across different jurisdictions. This will involve not just technical
measures but also a deep understanding of various legal frameworks and their implications on data
handling and processing.

Automated compliance and governance tools

To manage the complexities of compliance in cloud-native environments, the future will see a greater
reliance on automated tools. These tools will use AI and ML to monitor, analyze, and ensure compliance
across various aspects of cloud-native applications.

AI-driven compliance management

Imagine a scenario where an AI-driven tool continuously scans cloud-native environments for
compliance with various standards and regulations. It automatically adjusts configurations, updates
policies, and even generates compliance reports, significantly reducing the manual effort and complexity
involved in maintaining compliance.

Best practices for maintaining compliance in dynamic
environments

Maintaining compliance in dynamic cloud-native environments will require a set of best practices
that are adaptable, scalable, and efficient, as follows:

• Continuous compliance monitoring: Implementing continuous monitoring mechanisms to
ensure ongoing compliance with regulatory requirements. This involves real-time scanning
and auditing of cloud-native environments.

• Policy-as-code (PaC): Adopting a PaC approach, where compliance policies are codified and
automatically enforced across the cloud-native ecosystem. This ensures consistency and reduces
the risk of human error.

• Collaboration between development and compliance teams: Encouraging closer collaboration
between developers and compliance teams to ensure that compliance is integrated into the
development process rather than being an afterthought.

Future-Proofing Your Cloud Computing Skills246

• Regular training and awareness: Conducting regular training sessions and awareness programs
for all stakeholders involved in cloud-native development and deployment to keep them updated
on the latest regulatory requirements and best practices.

• Leveraging cloud provider expertise: Utilizing the expertise and tools provided by CSPs to
enhance compliance efforts. Many providers offer specialized services and tools designed to
help with regulatory compliance.

Remember – as cloud-native technologies advance, governance and compliance will remain critical
components. The future of cloud-native governance and compliance lies in leveraging automated
tools, adopting best practices, and staying adaptable to the evolving regulatory landscape. By doing
so, organizations can ensure that their cloud-native applications are not only innovative and efficient
but also secure and compliant.

With our exploration of cloud-native governance and compliance complete, we now turn our attention
to the next section. This section will summarize potential advancements and challenges and inspire
a forward-looking mindset among cloud professionals.

Conclusion – preparing for a cloud-native future
As we reach the zenith of our exploration into the evolving universe of cloud-native and multi-cloud
technologies, it’s time to distill our insights, confront challenges on the horizon, and gear up for a
future that is as exhilarating as it is transformative.

Envisioning the future – a tapestry of advancements and
challenges

Our journey has unveiled a future where advancements in cloud-native technologies are not just
incremental improvements but paradigm-shifting innovations. The integration of AI and ML promises
to endow cloud-native applications with unprecedented intelligence and autonomy. QC’s entry into
cloud environments heralds a new epoch of computational power, capable of solving complex problems
in moments. Serverless architectures and EDAs are poised to redefine efficiency and scalability, while
the ethos of sustainable cloud computing ensures that our technological strides are in harmony with
environmental stewardship.

Yet, these advancements bring forth a constellation of challenges. The intricacies of multi-cloud
management, the imperative of robust security and compliance across diverse ecosystems, and the
relentless pace of technological evolution call for unwavering vigilance and proactive strategies. Navigating
this landscape will demand more than technical acumen; it will require a holistic understanding of
the broader implications of these technologies.

Conclusion – preparing for a cloud-native future 247

The imperative of continuous learning and adaptation

In this ever-shifting terrain, the ability to continuously learn and adapt is not just an asset; it’s a necessity.
For cloud professionals, this means embracing a culture of perpetual growth and intellectual curiosity.

The following table explores the possibilities of how AI redefines key aspects of resource management,
infrastructure maintenance, and application development, leading to smarter, more efficient, and
cost-effective cloud solutions:

Cloud
computing aspect

AI’s transformative impact Example

Resource
management

Enables dynamic resource
allocation, optimizing
cloud performance
and cost-efficiency.

An AI system dynamically scales
server resources for an e-commerce
site during high-traffic events such
as Black Friday, ensuring smooth
performance without overspending.

Infrastructure
maintenance

Predictive AI algorithms
reduce downtime by
proactively scheduling
maintenance and
anticipating failures.

AI can analyze server health data to
predict and prevent a critical database
server failure, scheduling maintenance
before it impacts users.

Application
development

Accelerates app development,
reducing time and errors
through code generation and
automated security updates.

An AI tool can automatically generate
secure, efficient backend code for a
new mobile app, significantly speeding
up the development process.

Data analysis Advanced AI analytics
unlock deep insights from
cloud data, driving smarter
business decisions.

Processing customer data from a
cloud-based CRM to identify emerging
market trends, helping a company
tailor its marketing strategy.

Security and
compliance

Enhances cloud security
and compliance monitoring,
proactively identifying and
addressing risks.

An AI-powered security system detects
unusual network patterns indicative
of a cyber attack and automatically
initiates protective measures.

Serverless computing Optimizes serverless
architectures for efficient
resource use and
performance scaling.

AI can manage a serverless cloud
function, automatically adjusting its
resources based on real-time user
demand during a marketing campaign.

Future-Proofing Your Cloud Computing Skills248

Cloud
computing aspect

AI’s transformative impact Example

DevOps practices Automates DevOps processes,
from testing to CI/CD,
ensuring faster and more
reliable software delivery.

Integrating an AI system into a CI/CD
pipeline automatically tests new code
commits, identifies bugs, and suggests
optimizations before deployment.

Multi-cloud
management

Simplifies managing workloads
across multiple cloud
environments, enhancing
operational efficiency.

Intelligently distributes workloads
between AWS and Azure, optimizing
for cost and performance based on
real-time cloud service metrics.

User experience Personalizes cloud services
and interfaces, improving user
engagement and satisfaction.

An AI-driven cloud service customizes
its UI for each user, adapting to their
preferences and usage patterns for a
better experience.

Cost optimization Provides strategic
recommendations for cost
savings, making cloud
expenses more manageable.

AI can be leveraged to analyze and
predict usage patterns automatically
across cloud services to recommend
cost-saving measures, such
as downscaling underutilized
resources or choosing more
cost-effective options.

Table 10.2 – AI transformation in key aspects of cloud computing

Championing lifelong learning

The future belongs to those who are prepared to continually expand their knowledge and skills,
staying abreast of emerging technologies and methodologies. This commitment to lifelong learning
can take many forms – from formal education and certifications to self-directed study, participation
in professional communities, and hands-on experimentation.

Useful learning resources include the following:

• Cloud-Native Computing Foundation (CNCF) training

 � Website: https://www.cncf.io/training/courses/

 � CNCF Kubernetes certification (CKA): https://www.cncf.io/training/
certification/cka/

https://www.cncf.io/training/courses/
https://www.cncf.io/training/certification/cka/
https://www.cncf.io/training/certification/cka/

Conclusion – preparing for a cloud-native future 249

 � Free training courses: https://training.linuxfoundation.org/

 � Examples:

 � Introduction to Kubernetes: https://kubernetes.io/docs/tutorials/
kubernetes-basics/

 � Cloud-native service mesh fundamentals: https://training.linuxfoundation.
org/training/cloud-native-logging-with-fluentd-lfs242/

• AWS training courses

 � Website: https://aws.amazon.com/training/

 � AWS Certified Solutions Architect – Professional: https://aws.amazon.com/
certification/certified-solutions-architect-professional/

 � AWS Certified Developer – Associate: https://aws.amazon.com/certification/
certified-developer-associate/

 � AWS Certified DevOps Engineer – Professional: https://aws.amazon.com/
certification/certified-devops-engineer-professional/

 � AWS Certified Solutions Architect – Associate: https://aws.amazon.com/
certification/certified-solutions-architect-associate/

 � Free courses: https://aws.amazon.com/free/

 � AWS Certified Solutions Architect – Associate: https://aws.amazon.com/
certification/certified-solutions-architect-associate/

 � AWS Cloud Practitioner Essentials: https://aws.amazon.com/training/
classroom/aws-cloud-practitioner-essentials/

• Microsoft Azure certifications

 � Website: https://learn.microsoft.com/en-us/credentials/

 � Azure Solutions Architect Expert: https://learn.microsoft.com/en-us/
credentials/certifications/azure-solutions-architect/

 � Azure Developer Associate: https://learn.microsoft.com/en-us/
credentials/certifications/azure-developer/

 � Azure DevOps Engineer Expert: https://learn.microsoft.com/en-us/
credentials/certifications/devops-engineer/

https://training.linuxfoundation.org/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://training.linuxfoundation.org/training/cloud-native-logging-with-fluentd-lfs242/
https://training.linuxfoundation.org/training/cloud-native-logging-with-fluentd-lfs242/
https://aws.amazon.com/training/
https://aws.amazon.com/certification/certified-solutions-architect-professional/
https://aws.amazon.com/certification/certified-solutions-architect-professional/
https://aws.amazon.com/certification/certified-developer-associate/
https://aws.amazon.com/certification/certified-developer-associate/
https://aws.amazon.com/certification/certified-devops-engineer-professional/
https://aws.amazon.com/certification/certified-devops-engineer-professional/
https://aws.amazon.com/certification/certified-solutions-architect-associate/
https://aws.amazon.com/certification/certified-solutions-architect-associate/
https://aws.amazon.com/free/
https://aws.amazon.com/certification/certified-solutions-architect-associate/
https://aws.amazon.com/certification/certified-solutions-architect-associate/

Future-Proofing Your Cloud Computing Skills250

 � Azure Cloud Engineer Associate: https://learn.microsoft.com/en-us/
credentials/

 � Free courses: https://learn.microsoft.com/en-us/training/topics/
universities

 � Examples:

 � AZ-104 Azure Administrator Associate: https://learn.microsoft.com/
en-us/training/career-paths/administrator

 � AZ-900 Azure Fundamentals: https://learn.microsoft.com/en-us/
training/paths/microsoft-azure-fundamentals-describe-cloud-
concepts/

• Google Cloud certification program

 � Website: https://cloud.google.com/learn/training/

 � Professional Cloud Architect: https://cloud.google.com/learn/
certification/cloud-architect

 � Professional Cloud Developer: https://cloud.google.com/learn/
certification/cloud-developer

 � Professional Cloud DevOps Engineer: https://cloud.google.com/learn/
certification/cloud-devops-engineer

 � Associate Cloud Engineer: https://cloud.google.com/learn/certification/
cloud-engineer

 � Google Cloud Fundamentals: https://www.coursera.org/learn/
gcp-fundamentals

 � Free courses: https://www.cloudskillsboost.google/

 � Examples:

 � Google Certified Cloud Architect: https://www.cloudskillsboost.google/
paths/12

 � Google Cloud Fundamentals: https://www.coursera.org/learn/
gcp-fundamentals

• General Cloud Development Courses and resources – Basic to Advance

 � For Beginners:

 � Udacity - Cloud Native Foundations Nanodegree: https://www.udacity.com/
course/cloud-native-application-architecture-nanodegree--nd064

https://cloud.google.com/learn/training/
https://cloud.google.com/learn/certification/cloud-architect
https://cloud.google.com/learn/certification/cloud-architect
https://cloud.google.com/learn/certification/cloud-developer
https://cloud.google.com/learn/certification/cloud-developer
https://cloud.google.com/learn/certification/cloud-devops-engineer
https://cloud.google.com/learn/certification/cloud-devops-engineer
https://cloud.google.com/learn/certification/cloud-engineer
https://cloud.google.com/learn/certification/cloud-engineer
https://www.coursera.org/learn/gcp-fundamentals
https://www.coursera.org/learn/gcp-fundamentals
https://www.cloudskillsboost.google/
https://www.cloudskillsboost.google/paths/12
https://www.cloudskillsboost.google/paths/12
https://www.coursera.org/learn/gcp-fundamentals
https://www.coursera.org/learn/gcp-fundamentals
https://www.udacity.com/course/cloud-native-application-architecture-nanodegree--nd064
https://www.udacity.com/course/cloud-native-application-architecture-nanodegree--nd064

Conclusion – preparing for a cloud-native future 251

 � Coursera - Developing Cloud Native Applications: https://www.coursera.org/
learn/getting-started-app-development

 � Linux Foundation - Introduction to Kubernetes (CNF): https://www.edx.
org/learn/kubernetes/the-linux-foundation-introduction-to-
kubernetes

 � For Intermediate Learners:

 � A Cloud Guru - Certified Kubernetes Application Developer (CKAD): https://
learn.acloud.guru/course/certified-kubernetes-application-
developer/overview

 � Pivotal - Modernizing Applications for Cloud Native Delivery: https://www.
pluralsight.com/courses/cloud-foundry-developer-1dot7-pivotal

 � Kubernetes Academy - Certified Kubernetes Security Specialist (CKS): https://
kube.academy/

 � Additional Resources:

 � CNCF Learning Resources: https://www.cncf.io/

 � The Serverless Ledger: https://aws.amazon.com/qldb/

 � Microservices.io: https://microservices.io/patterns/

• Developing and Deploying Containerized Applications: https://www.pluralsight.
com/courses/deploying-containerized-applications

• Serverless Computing for Developers: https://training.serverlessguru.com/

• Cloud Native Security Foundation: https://www.cncf.io/training/courses/

• Cloud Native Continuous Integration and Delivery: https://www.cloudbees.com/
capabilities/continuous-integration

Remember – these are just starting points. Consider your specific learning goals and experience level
when choosing courses and certifications.

Cultivating a forward-looking mindset

As we stand on the brink of this new era, fostering a forward-looking mindset among cloud professionals
is paramount. This mindset is characterized by an eagerness to explore uncharted territories, a readiness
to rethink conventional paradigms, and a resilience to adapt to the unexpected.

https://www.coursera.org/learn/getting-started-app-development
https://www.coursera.org/learn/getting-started-app-development
https://www.edx.org/learn/kubernetes/the-linux-foundation-introduction-to-kubernetes
https://www.edx.org/learn/kubernetes/the-linux-foundation-introduction-to-kubernetes
https://www.edx.org/learn/kubernetes/the-linux-foundation-introduction-to-kubernetes
https://learn.acloud.guru/course/certified-kubernetes-application-developer/overview
https://learn.acloud.guru/course/certified-kubernetes-application-developer/overview
https://learn.acloud.guru/course/certified-kubernetes-application-developer/overview
https://www.pluralsight.com/courses/cloud-foundry-developer-1dot7-pivotal
https://www.pluralsight.com/courses/cloud-foundry-developer-1dot7-pivotal
https://kube.academy/
https://kube.academy/
https://www.cncf.io/
https://aws.amazon.com/qldb/
https://microservices.io/patterns/
https://www.pluralsight.com/courses/deploying-containerized-applications
https://www.pluralsight.com/courses/deploying-containerized-applications
https://training.serverlessguru.com/
https://www.cncf.io/training/courses/
https://www.cloudbees.com/capabilities/continuous-integration
https://www.cloudbees.com/capabilities/continuous-integration

Future-Proofing Your Cloud Computing Skills252

Innovation as a guiding star

The future of cloud computing will be shaped by those who dare to innovate, who are not afraid
to challenge the status quo, and who view every problem as an opportunity for creative solutions.
Encouraging such a culture of innovation will be crucial in harnessing the transformative potential
of cloud-native technologies.

Bracing for the unforeseen

Perhaps the most defining aspect of preparing for a cloud-native future is developing the agility to
navigate the unknown. It’s about building a professional ethos that is as flexible as it is robust, capable
of responding to emerging challenges and seizing new opportunities.

Summary
In summing up, the journey into the future of cloud-native and multi-cloud technologies is one of
extraordinary possibilities and significant challenges. As we embark on this path, our success will hinge
on our ability to continually learn, to innovate with purpose, and to foster a mindset that looks beyond
the horizon. This journey is not just about keeping pace with change; it’s about leading it and shaping
the future of cloud computing with vision, expertise, and an unwavering commitment to excellence.

With this comprehensive and forward-looking conclusion, we close our exploration of the future
outlook for cloud-native and multi-cloud technologies. This chapter has not only illuminated the
path ahead but also equipped you with insights, strategies, and the mindset to navigate and influence
this dynamic and exciting future.

Index

Symbols
4Cs of cloud-native security 102

cloud 103
cluster 103
code 103
container 103

15-factor applications
reference link 21

A
access keys

managing 116
Adobe’s orchestration mastery 217
Advanced Encryption Standard (AES) 98
advanced orchestration 216

Adobe’s orchestration mastery 217
advanced security paradigms, cloud-

native applications 230
AI and ML integration, into cloud-

native cybersecurity 232
future security frontiers 232
Zero Trust 230

AI-driven edge computing 240
AI for IT Operations (AIOps) 220, 225

components 226
comprehensive image 225

Amazon Elastic Beanstalk 172
Amazon machine images (AMIs) 170
Amazon Web Services

(AWS) 20, 110, 190, 157, 215
Ansible 70, 150
API-first approach 56
API gateway 43

example 44
strengths 44
weaknesses 44

API server 88
application development

evolution 4
microservices 5
monolithic era 4
service-oriented architecture (SOA) 4

application programming
interfaces (APIs) 22, 27

application service provider (ASP) 6
applications modernization,

with GenAI 217
automated code refactoring 218
development life cycle, revolutionizing 219
migration to microservices 218
streamlining 218

attribute-based access control (ABAC) 100

Index254

authentication 112
automated compliance checks 99
autonomous edge management 240
auto-scaling policies

for dynamic workloads 203
AWS Elastic Load Balancer (ELB) 201
Azure Active Directory (Azure AD) 114, 198
Azure Information Protection (AIP) 119

B
backend for frontend (BFF) pattern 49

example 49
strengths 49
weaknesses 49

benefits, cloud computing
cost-effectiveness 7
flexibility 7
scalability 7
security and compliance 7

blameless culture 161
blockchain 240
blockchain integration 240

benefits 241
challenges 242
considerations 242
future 242
use cases 241

blue-green deployment 178
implementing 178
use cases 178

bounded contexts 55
brownfield 218
buffer overflow 107
buffer overrun 107
Buildah 85

C
California Consumer Privacy

Act (CCPA) 244
canary deployment 176, 177

implementation 177
use cases 177

Center for Internet Security (CIS) 103
centralized IAM 113, 114
chaos engineering 163, 164
chaos engineering (CE) 30
Chaos Monkey 163
chaos security 164
CI/CD pipelines 195, 196
CircleCI 73
circuit breakers (CBs) 30, 45

example 46
strengths 45
weaknesses 45

CIS benchmarks 104
aspects, for cloud-native applications 104
implementing 104

cloud computing 5, 6
service categories 7

Cloud Controls Matrix (CCM) 104
cloud-native application

building 192
considerations 192, 193

cloud-native application architecture 30
API gateway 31
building blocks 30
cloud-native application architecture 32
microservices 31
serverless computing 32
service mesh 31

cloud-native application development 38
best practices 176
deployment patterns 176
strategies 176

Index 255

cloud-native application, examples
IoT sensor data analytics platform 194
ride-sharing and navigation service 194, 195

cloud-native applications 139
multi-factor authentication (MFA),

implementing 115
troubleshooting, challenges 141, 142

cloud-native applications for multi-cloud
considerations 188, 189
designing 188
designing, steps 190, 191

cloud-native applications, logging
best practices 144

cloud-native applications, troubleshooting
centralized monitoring tool,

advantages 142, 143
centralized monitoring tool, selecting

for requirement 143, 144
centralized monitoring tool, using 142
cloud-native configuration management

tool, using 150, 152
cloud-native debugging tool, using 145, 146
cloud-native logging tool, using 144, 145
cloud-native observability

platform, using 147, 148
service mesh selecting for

requirements 149, 150
service mesh, using 149
tips 142

cloud-native architecture
principles 21

cloud-native design patterns 38
API gateway 43
backend for frontend (BFF) pattern 49
circuit breaker 45
command query responsibility

segregation (CQRS) 49
containerization 40
event-driven architecture (EDA) 42

microservices architecture 38
saga pattern 48
sharding pattern 50
sidecar pattern 46
strangler fig pattern 47

cloud-native development 13
advantages 12
blockchain integration 240
challenges 12, 14
complexity, managing 15
cost management 15
cultural transformation 17
evolution 11, 12
predictions, for AI and ML 227
security and compliance, ensuring 15
skills and knowledge 15
strategic recommendations, for AI

and ML integration 227, 228
troubleshooting, importance 140
versus multi-cloud strategies 13, 14

cloud-native ecosystem
advanced architectures, navigating

with AI assistance 222
emerging tools and platforms 222
futuristic outlook, of GenAI 223

cloud-native evolution
artificial intelligence (AI) 217
machine learning (ML) 217

cloud-native foundation
cloud-native technologies 57
Function-as-a-Service (FaaS) 57
service mesh 58
technologies, selecting 57

cloud-native future
continuous learning and adaptation 247
envisioning 246
learning resources 248, 251
preparing for 246

Index256

cloud-native platform
foundational pillar, for GenAI 221

cloud-native security
challenges 232
opportunities 232

cloud-native stack 19, 20
cloud-native technologies 57

challenges 172
cultural shift 173
lessons 173, 181, 182
project future 182-184
strategies 172
tools and practices 172
using, to scalable finance industry 172
using, to secure finance industry 172

cloud-native transformation 175
challenges 175
cultural shift 175
lessons 175
strategies 175
tools and practices 175

cloud provider
cost and performance, selecting 130
data management cost strategies 132, 133
evaluating 130
performance and reliability metrics 131, 132
pricing models 131

cloud provider, case studies 135
eCommerce platform 135
social media app, optimizing 136

cloud resource management
redefining 225

cloud resources
optimizing 127-129

Cloud Security Alliance (CSA) 103
cloud service providers (CSPs) 104, 235
Cloud Spanner 59

command query responsibility
segregation (CQRS) 49

example 50
strengths 50
weaknesses 50

compliance 109
auditing 111, 112
challenges 109, 110
cloud provider-specific

compliance, offerings 110
considerations 101, 102, 109, 110
controls, defining 110
industry-specific regulations,

overviewing 109
managing 108
monitoring 111, 112
policies, defining 110
procedures, defining 110

compliance and governance 244
AI-driven compliance management 245
automated tools 245
regulatory landscapes, navigating 245

compliance cycle, phases
continuous 109
detect 109
identify 109
remediate 109

compliance maintenance, in
dynamic environments

best practices 245
consent management platforms (CMPs) 119
containerd 85
containerization 40, 85

challenges 87
example 41
strengths 41, 87
weaknesses 41

Index 257

containerization solution
selecting 85

container runtime 88
content delivery network

(CDN) 191, 200, 204
continuous delivery (CD) 20
continuous deployment (CD) 72

deploy stage 75
continuous integration and continuous

delivery (CI/CD) 12
continuous integration (CI) 19, 72

build stage 75
test stage 75

continuous integration/continuous
deployment (CI/CD) 67, 72-74

best practices 75-77
controller manager 88
cost-optimization strategies 202

cloud cost management tools
and techniques 202

cloud spend, monitoring 203
cloud spend, optimizing 203
FinOps practices, implementing 202
right-sizing resources for cost efficiency 202

credentials
managing 116

cross-site scripting (XSS) 107
CSA framework 104

Cloud Controls Matrix (CCM) 104
implementing, steps 104
Security, Trust, Assurance, and

Risk (STAR) program 104

D
data anonymization 117
data backup 59
Database Migration Service (DMS) 58

data classification 117
data consistency 59

managing 158, 159
Datadog 60, 142
data loss prevention (DLP)

monitoring 119
strategies 119

data management 58
data backup 59
data consistency 59
data replication 59
data storage 58
disaster recovery plans 59
in multi-cloud 58

data masking 118
data obfuscation 118
data portability 99
data privacy

considerations 101, 102
implications, overview 117
regulations, overview 117
requirements 116

data privacy controls
implementing 117

data protection
best practices, implementing 99, 100

data protection, toolkits
continuous monitoring and auditing 101
data access controls and confidentiality 100
data backup and recovery 101
data integrity 101
encryption techniques 100

data redaction 118
data replication 59
data residency and sovereignty 99
data security

best practices 98, 99
in multi-cloud 98

Index258

data silos 141
data storage 58
decision-making applications

accelerating, with Kubernetes 170
challenges 170
cultural shift 171
lessons 171
strategies 171
tools and practices 171

denial-of-service (DoS) attacks 98
deployment best practices 195, 197

CI/CD pipelines 195, 196
Infrastructure as Code (IaC) for

reproducible deployments 196
deployment issues

data consistency 201
networking challenges 201
resource mismatch 200
scaling problems 201

deployment patterns, cloud-native
application development

blue-green deployment 178
canary deployment 176, 177
rolling deployment 179
shadow deployment 180, 181

development life cycle
revolutionizing 219, 220

DevOps 78
adoption, challenges 80, 81
versus GitOps 78, 79

DevSecOps best practices, for
cloud-native apps 105

automation for secure deployments 107
configuration management

for secure deployments 107
secure development practices,

ensuring 107, 108
security, integrating into DevOps

workflow 105, 106

disaster recovery (DR) 99
Docker Swarm 41
domain-driven design (DDD) 55

role 55
Dynatrace 147

E
e-commerce, in multi-cloud architecture 210

architecture 207
budgeting 207
CI/CD pipeline 208
compliance requirements 208
DevSecOps practices 208
FinOps 207
observability practices 209
project planning 205, 206
Site Reliability Engineering (SRE) 210
stack, monitoring 209
use case 205

e-commerce platform
with microservices 62
with sharding 62

Edge as a Service (EaaS) 240
elasticity 29

designing 203
Elasticsearch, Logstash, and

Kibana (ELK) 145
encryption 98
encryption-at-rest 198
encryption techniques 100
Engine Yard platform 172
Envoy 47
error budgets 160, 161
etcd 88
event-driven architecture (EDA)

example 42
strengths 42
weaknesses 42

Index 259

events 42
evolving regulatory landscapes

global data privacy laws, adapting 245
navigating 245

external traffic control 83

F
fault tolerance (FT) 29
financial operations (FinOps) 122

cloud-native apps, in multi-cloud 122-124
reference link 123

financial services firm
with circuit breaker 63
with replication 63

FinOps cycle
inform stage 123
operate stage 123
optimize stage 123

FinOps practices 125
collaboration 125, 126

forward-looking mindset
cultivation 251, 252

Function as a Service (FaaS) 57, 228
evolution 228
future 229

G
General Data Protection Regulation

(GDPR) 97, 244
generative AI (GenAI) 217
GitOps 78

adoption, challenges 80, 81
versus DevOps 78, 79

global media streaming company
with API gateway 64

Google Cloud 157
Google Cloud Platform (GCP) 20, 190, 216

Google Cloud’s Transfer Service 58
governance and cost control 134
governance frameworks

establishing 110
Grafana 60, 147
green computing 235

eco-friendly cloud 236
greenfield approach 219, 220

H
Health Insurance Portability and

Accountability Act (HIPAA) 97
heterogeneous multi-cloud architecture 53
high availability

designing 203
homogeneous multi-cloud architecture 53
hybrid cloud

versus multi-cloud 8
hybrid multi-cloud architecture 53

I
identity and access management

(IAM) 92, 112, 230
access management 113
authentication 112
capabilities, exploring 113, 114
centralized IAM 114
single sign-on (SSO) 113

identity and access management (IAM)
MFA 114
secure access 114

identity management (IM) 113
immutability 27
immutable infrastructure 215

benefits 215, 216
Spotify’s immutable infrastructure

strategy 216

Index260

Infrastructure-as-a-Service (IaaS) 6, 7
Infrastructure as Code (IaC) 67-69, 77

for reproducible deployments 196
strengths 69
tools, to implement 70, 72
weaknesses 70

initialization vector (IV) 100
International Organization for

Standardization (ISO) 109
Internet of Things (IoT) sensor

data analytics platform
developing 194

interoperability 240
Istio 57, 82, 148

J
Jenkins 73

K
key performance indicators (KPIs) 204
Kiali 150
kubelet 88
kube-proxy 88
Kubernetes 12, 41, 88, 145, 221

advantages 222
challenges 91, 173
challenges, addressing 91
cultural shift 174
lessons 174
scaling up 173
strategies 174
strengths 90, 91
tools and practices 174
used, for accelerating decision-

making applications 170
Kubernetes architecture 88, 89

API server 88

container runtime 88
controller manager 88
etcd 88
kubelet 88
kube-proxy 88
scheduler 88

L
large language models (LLMs)

futuristic outlook, of GenAI 223
LC/NC platforms 242

benefits 243
challenges 243, 244
considerations 243, 244
future 244

legacy e-commerce application
automated code refactoring 218
migration to microservices 219
modernizing 218

Linkerd 148
load balancing 82

across multi-cloud environments 203
load testing 199

performing 200

M
machine learning (ML) 224

complexity management 224
dynamic resource allocation 225
efficiency and resource optimization 224
in multi-cloud infrastructure

management 224, 225
predictive analytics and proactive

adaptation 224
microservices 5, 26, 31

advantages 5

Index 261

microservices architecture 25, 26, 38, 39
APIs 27, 28
elasticity 29
example 40
fault tolerance (FT) 29
immutability 27
resilience 30
scalability 29
service discovery 28, 29
statelessness 27
strengths 39
weaknesses 39

microservices communication
streamlining 157, 158

monitoring 60
monolithic architecture

drawbacks 4
multi-cloud

challenges 10
cost optimization 61
data management 58
designing 52
factors 9, 10
monitoring 60
need for 8
observability 60
privacy 98
versus hybrid cloud 8

multi-cloud application design
best practices 65, 66
scalability 54

multi-cloud application design,
key principles 54

availability 54
portability 54
resilience 55
security 55

multi-cloud application development
best practices 176
strategies 176

multi-cloud architecture 37
heterogeneous multi-cloud architecture 53
homogeneous multi-cloud architecture 53
hybrid multi-cloud architecture 53

multi-cloud, case study
e-commerce platform, with microservices 62
e-commerce platform, with sharding 62
financial services firm, with

circuit breaker 63
financial services firm, with replication 63
global media streaming company,

with API gateway 64
multi-cloud development

shift-left cost optimization 122
multi-cloud environment

real-time processing and IoT integration 229
site reliability engineering (SRE) 160

multi-cloud landscapes
advanced orchestration 216

multi-cloud networking 92
multi-cloud strategies 13

challenges 14
complexity, managing 15
cost management 15
security and compliance, ensuring 15
skills and knowledge 15
versus cloud-native development 13, 14

multi-factor authentication
(MFA) 113, 114, 231

auditing 116
implementing, in cloud-native

applications 115
monitoring 115, 116
pillars 114, 115

Index262

N
National Institute of Standards and

Technology (NIST) 109
network security groups (NSGs) 104
New Relic 60, 147
Node.js service 40

O
observability 60
Open Authorization 2 (OAuth2) 113
OpenID Connect (OIDC) 114
Open Policy Agent (OPA) 110
Opossum package 46
optimization 200

P
Payment Card Industry Data Security

Standard (PCI DSS) 97
performance

monitoring 204
tuning 205

performance optimization 199
performing 200

personally identifiable
information (PII) 101

handling 117
pivotal cloud foundation (PCF) 174
Pivotal Kubernetes service (PKS) 174
Platform-as-a-Service (PaaS) 6, 7
platform engineering 214

evolution 214
Netflix’s strategic shift case study 215

Podman 85
predictive analytics 225
principle of least privilege (PoLP) 98

privacy
in multi-cloud 98

project planning 185
budget, setting 187
communication channels, establishing 187
multi-cloud strategy, creating 187
project objectives and requirements,

defining 186, 187
project timelines and milestones,

establishing 188
resources, allocating 187
risk assessment and mitigation 188
stakeholders, identifying 187

Prometheus 60, 147
components 147

pseudonymization 119

Q
quantum computing (QC) 233

capabilities 233
cloud landscape, revolutionizing 233
example 234
key strategies 234
quantum encryption 233
quantum future, navigating 234
quantum key distribution (QKD) 234
strategic recommendations 235

R
reducing toil 161
resilience 30
Responsibility Assignment

Matrix (RACI) 126
return on investment (ROI) 131
ride-sharing and navigation service

developing 194, 195

Index 263

Rivest-Shamir-Adleman (RSA) 98
role-based access control (RBAC) 100, 198
rolling deployment 179

implementing 179
use cases 179

Rookout 146

S
saga pattern 48

example 48
strengths 48
weaknesses 48

scalability 29
scheduler 88
secure access 114
secure access controls

implementing 116
Secure Sockets Layer (SSL) 100
security 92
Security Assertion Markup

Language (SAML) 113
security best practices, for deployment 198

encryption 198
Identity and Access Management (IAM) 198
regular security audits 198

security information and event
management (SIEM) 101

Security, Trust, Assurance, and
Risk (STAR) program 104

sensitive data
identifying 117
protection requirements 117

serverless architectures 145
serverless architectures, case studies 229

Coca-Cola’s serverless vending
machine solutions 230

Netflix’s serverless video
encoding system 229

service discovery 28, 82
service-level indicators (SLIs) 160
service-level objectives (SLOs) 160
service mesh 32, 58, 82, 83, 148

challenges 84
requirements 149, 150
strengths 84
used, for troubleshooting 148, 149
using 148

service-oriented architecture (SOA) 4
advantages 4

session management
implementing 116

shadow deployment 180, 181
implementing 181
use cases 180

sharding pattern 50
example 51
strengths 51
weaknesses 51

shared responsibility 161
shift-left cost management 125

benefits 126, 127
implementing 125
prevention 125

shift-left cost optimization 122
for multi-cloud development 122

sidecar pattern 46
example 47
strengths 47
weaknesses 47

single sign-on (SSO) 113
single source of truth (SSOT) 114
site reliability engineering

(SRE) 160, 205, 210
in multi-cloud environment 160

site reliability engineering
(SRE) benefits 162

continuous improvement 162

Index264

efficient scalability 162
enhanced flexibility 162
enhanced security and compliance 162
faster time-to-market 162
improved incident management 162
improved service reliability 162
optimized cost management 162
reduced operational toil 162
vendor lock-in, avoiding 162

site reliability engineering
(SRE) principles 160

blameless culture 161
error budgets 160, 161
reducing toil 161
service-level indicators (SLIs) 160
shared responsibility 161

Skopeo 85
social media platform development 220

automated code generation
and optimization 220

conception and initial design 220
deployment strategy 221
microservices architecture 221
outcome 221

Social Security number (SSN) 119
Software-as-a-Service (SaaS) 6, 7
software development life cycle

(SDLC) 106, 228
specific, measurable, achievable, relevant,

and time-bound (SMART) 186
Splunk 60, 145
Spotify’s immutable infrastructure

strategy 216
SQL injection 107
standardization 240
statelessness 27
static application security

testing (SAST) 107

strangler fig pattern 47
example 48
strengths 47
weaknesses 47

Structured Query Language (SQL) 107
sustainable cloud computing 235

energy-efficient strategies 236
future 238
Google Cloud’s carbon-neutral

operations case study 237
green computing 235
innovative approaches, to

energy efficiency 236
Microsoft’s sustainability

initiatives case study 237
strategic imperatives, for green

cloud horizon 238
sustainable edge computing 240

T
telco and edge computing 238

5G networks, for game-changer 239
distributed data, managing 239
future trends 240
seamless data management 239

Telepresence 146
Terraform 150
threat intelligence (TI) 232
time-to-market (TTM) 228
toil 161
total cost of ownership (TCO) 131
traffic spikes and surges

handling 204
Transport Layer Security (TLS) 98, 198
troubleshooting 200

importance, in cloud-native
development 140

Index 265

troubleshooting process, for cloud-
native applications

analysis and diagnosis 154
continuous improvement 156, 157
establishing 152
issue, detecting 152, 153
issue, isolating 153, 154
learning from experience and

document 155, 156
solution, creating 155
solution, deploying 155
solution, implementing 155
solution, testing 155

troubleshooting strategies, case
studies in multi-cloud 157

challenges, scaling 159, 160
data consistency, managing 158, 159
microservices communication,

streamlining 157, 158
Twelve-Factor App 21-25
two-factor authentication (2FA) 113

U
Ubiquitous Language 56

V
version control system (VCS) 22
virtual machines (VMs) 86, 200
virtual private cloud (VPC) 71
virtual private networks (VPNs) 92

W
waste minimize

optimizing 127-129

Y
YAML 70

Z
Zabbix 142
Zero Trust 230

architecture 231
implementation 231

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.packtpub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@
packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://www.packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy268

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Technology Operating Models for Cloud and Edge

Ahilan Ponnusamy, Andreas Spanner, Mirco Hering, Vincent Caldeira, Neetan Chopra

ISBN: 978-1-83763-139-1

• Get a holistic view of technology operating models and linked organization goals, strategy,
and teams

• Overcome challenges of extending tech operating models to distributed cloud and
edge environments

• Discover key architectural considerations in building operating models

• Explore the benefits of using enterprise-ready open-source products

• Understand how open hybrid cloud and modern dev and ops practices improve outcomes

https://packt.link/1837631395

Why subscribe? 269

Azure for Developers

Kamil Mrzygłód

ISBN: 978-1-80324-009-1

• Identify the Azure services that can help you get the results you need

• Implement PaaS components – Azure App Service, Azure SQL, Traffic Manager, CDN,
Notification Hubs, and Azure Cognitive Search

• Work with serverless components

• Integrate applications with storage

• Put together messaging components (Event Hubs, Service Bus, and Azure Queue Storage)

• Use Application Insights to create complete monitoring solutions

• Secure solutions using Azure RBAC and manage identities

• Develop fast and scalable cloud applications

https://packt.link/1803240091

Other Books You May Enjoy270

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Multi-Cloud Handbook for Developers, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you purchased
it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-804-61870-5
https://packt.link/r/1-804-61870-5

Download a free PDF copy of this book 271

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80461-870-7

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-80461-870-7

	Cover
	Title page
	Copyright and credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1:
Introduction to Multi-Cloud and Cloud-Native
	1
	Chapter 1: Discovering the Multi-Cloud and Cloud-Native Universe
	The evolution of application development
	The monolithic era
	The advent of SOA
	Microservices and containers

	The rise of cloud computing
	Cloud computing service categories
	Benefits of cloud computing

	The emergence of multi-cloud and its distinction from hybrid cloud
	Multi-cloud versus hybrid cloud
	 Understanding the significance of multi-cloud
	Challenges of multi-cloud

	Evolution of cloud-native development
	The cloud-native advantage
	Overcoming cloud-native challenges
	When cloud-native meets multi-cloud

	The synergy between cloud-native and multi-cloud
	Overcoming challenges

	The cultural shift in development
	Summary

	2
	Chapter 2: Building the Backbone of Cloud-Native Applications
	The cloud-native stack
	Principles of cloud-native architecture
	The Twelve-Factor App – a quick walk-through

	Microservices architecture
	Statelessness and immutability
	APIs and service discovery
	Scalability and elasticity
	Resilience and fault tolerance

	Cloud-native application architecture
	Components of a cloud-native application – the building blocks

	Summary

	Part 2:
Designing and Developing Cloud-Native Applications
for Multi-Cloud
	3
	Chapter 3: Designing for Diversity with Multi-Cloud
 Application Strategies
	Cloud-native design patterns
	Designing for multi-cloud
	Understanding multi-cloud architecture
	Key principles of multi-cloud application design

	Role of domain-driven design
	Importance of an API-first approach
	Selecting the right technologies for a cloud-native foundation
	Data management in multi-cloud
	Monitoring and observability in multi-cloud
	Optimizing costs in multi-cloud
	Case studies
	Case Study 1: E-commerce platform using microservices and sharding
	Case Study 2: Financial services firm leveraging circuit breaker and replication
	Case Study 3: Media streaming company adopting eventual consistency and API gateway

	Best practices for multi-cloud application design
	Summary

	4
	Chapter 4: Crafting and Deploying in the Multi-Cloud as a Developer
	IaC
	Strengths of IaC
	Weaknesses of IaC
	Tools to implement IaC

	CI/CD
	CI/CD best practices

	Scaling mountainous success – a tale of DevOps
and GitOps
	Challenges

	Service meshes in multi-cloud environments
	Containerization and orchestration
	Containerization
	Kubernetes

	Multi-cloud networking and security
	Summary

	Part 3:
Managing and Operating Cloud-Native Apps in
 Multi-Cloud
	5
	Chapter 5: Managing Security, Data, and Compliance on Multi-Cloud
	Managing data and security in multi-cloud environments
	Understanding data security and privacy in multi-cloud
	Data residency and sovereignty
	Automated compliance checks and data portability
	Implementing best practices for data protection
	Data privacy and compliance considerations

	Introduction to security in cloud-native multi-cloud environments
	CIS benchmarks
	CSA framework

	DevSecOps best practices for cloud-native apps in multi-cloud environments
	Integrating security into the DevOps workflow
	Automation and configuration management for secure deployments
	Ensuring secure development practices

	Managing compliance across multiple clouds environments
	Understanding the compliance landscape in multi-cloud environments
	Implementing governance frameworks and controls

	IAM across multiple clouds environments
	Centralized IAM
	MFA and secure access

	Data privacy and protection
	Understanding data privacy requirements
	Implementing data privacy controls

	Summary

	6
	Chapter 6: Maximizing Value and Minimizing Cost in Multi-Cloud
	The shift-left cost for development in multi-cloud
	FinOps practices for cloud-native apps in multi-cloud
	Implementing shift-left cost management and FinOps practices
	Shifting costs left – prevention is key
	FinOps – collaboration is the secret sauce
	The rewards of a cost-conscious mindset

	Optimizing cloud resources and minimizing waste
	Selecting the right cloud provider based on cost and performance
	Evaluating cloud providers – cost factors and performance metrics
	Performance and reliability metrics
	Data management cost strategies

	Governance and cost control
	Cloud provider comparison case studies
	Case study 1 – eCommerce giant slashes costs by 50% with a multi-cloud microservices approach
	Case study 2 – social media app optimizes costs by 30% with containers and automation

	Summary

	7
	Chapter 7: Troubleshooting
 Multi-Cloud Applications
	Challenges of troubleshooting cloud-native applications
	Tips for troubleshooting cloud-native applications
	Use a centralized monitoring tool
	Choosing a centralized monitoring tool for your needs
	Use a cloud-native logging tool
	Use a cloud-native debugging tool
	Use a cloud-native observability platform
	Use a service mesh
	Choosing the right service mesh for your needs
	Use a cloud-native configuration management tool

	Establishing an effective troubleshooting process for cloud-native applications
	Step 1 – Detecting the issue
	Step 2 – Isolate the problem
	Step 3 – Analyze and diagnose
	Step 4 – Create, test, and deploy the solution
	Step 5 – Learn from the experience and document
	Step 6 – Continuous improvement

	Case studies
	Case study 1 – Streamlining microservices communication in multi-clouds
	Case study 2 – Managing data consistency in a multi-cloud environment
	Case study 3 – Scaling challenges in a multi-cloud environment

	SRE in multi-cloud environments
	The principles of SRE
	The benefits of SRE

	Chaos engineering
	Summary

	Part 4:
Best Practices, Case Studies, and Future Trends for
 Multi-Cloud and Cloud-Native
	8
	Chapter 8: Learning from Pioneers and Case Studies
	Real-world case studies
	Capital One – accelerating decision-making applications with Kubernetes
	Ygrene – using cloud-native tech to bring security and scalability to the finance industry
	T-Mobile – scaling up for peak with Kubernetes
	Uber – cloud-native transformation for agility

	 Deployment strategies and best practices
	Deployment strategies

	Lessons learned and recommendations
	Lessons learned
	Recommendations for future projects

	Summary

	9
	Chapter 9: Bringing Your Cloud-Native Application to Life
	Project planning
	Designing cloud-native applications for multi-cloud
	Designing a cloud-native application on multi-cloud
	Building your cloud-native application

	Practical examples: building effective cloud-native applications
	Deployment best practices
	Security best practices for deployment
	Load testing and performance optimization
	Performing load testing and performance optimization

	Troubleshooting and optimization
	Optimization and scaling
	Cost-optimization strategies
	Scalability and elasticity
	Performance monitoring and tuning

	Hands-on exercise: e-commerce in multi-cloud architecture
	Summary

	10
	Chapter 10: Future-Proofing Your Cloud Computing Skills
	Next-generation cloud-native infrastructure and platforms
	Evolution of platform engineering

	The rise of immutable infrastructure and its implications
	Spotify’s immutable infrastructure strategy
	Advanced orchestration in multi-cloud landscapes

	Introduction to AI and ML in cloud-native evolution
	Modernizing applications with GenAI
	The cloud-native platform becomes a foundational pillar for GenAI
	ML – a pivotal tool in advanced cloud-native application management
	Predictive analytics and AIOps – redefining cloud resource management
	Predictions for AI and ML in cloud-native development

	The emergence of serverless architecture and EDA
	The evolution and future of FaaS in cloud-native ecosystems
	Real-time processing and IoT integration in multi-cloud environments
	Case studies of serverless architectures in large-scale applications

	Advanced security paradigms for cloud-native applications
	Reimagining security – the advent of Zero Trust in multi-cloud environments
	Harnessing AI and ML – the vanguard of cloud-native cybersecurity
	Navigating future security frontiers in cloud-native ecosystems

	Quantum computing (QC) and its impact on cloud technologies
	QC – revolutionizing the cloud landscape
	Example of QC
	Navigating the quantum future in cloud computing
	Strategic recommendations

	Sustainable cloud computing – a new era
	Green computing – the heart of future cloud-native development
	Energy-efficient strategies in multi-cloud infrastructures
	Case studies of sustainable practices in cloud computing
	Strategic imperatives for a green cloud horizon
	Embracing a sustainable future in cloud computing

	The convergence of telco and edge computing with cloud-native
	5G as a game-changer for edge-enhanced cloud applications
	Managing distributed data in multi-cloud and edge environments
	Future trends in edge and cloud-native integrations

	Blockchain integration with cloud-native development
	Understanding blockchain in a cloud-native context

	The rise of LC/NC platforms
	LC/NC platforms in modern application developments
	Challenges and considerations
	The future outlook

	Cloud-native governance and compliance in the future
	Navigating evolving regulatory landscapes
	Automated compliance and governance tools
	Best practices for maintaining compliance in dynamic environments

	Conclusion – preparing for a cloud-native future
	Envisioning the future – a tapestry of advancements and challenges
	The imperative of continuous learning and adaptation
	Championing lifelong learning
	Cultivating a forward-looking mindset

	Summary

	Index
	Other Books You May Enjoy
	_heading=h.s9a6nhdff58z
	_heading=h.gjdgxs
	_heading=h.xyh5muk0pdrq
	_heading=h.lrw3enqmpw5n
	_heading=h.xnot96gd2l3z
	_heading=h.qoeuxbh3uhs5
	_heading=h.ieze0c8ehhyj
	_heading=h.k8tud735p05b
	_heading=h.uu2tynluexan
	_heading=h.duqxsfs534ig
	_heading=h.xjjxchhcl9vj
	_heading=h.a5241569pr1o
	_heading=h.ugnzpt8w1err
	_heading=h.xmgjdm7lhw9q
	_heading=h.813caprex4ke
	_heading=h.jmaht66oiywr
	_heading=h.gjdgxs
	_heading=h.gozybusyzpmv
	_heading=h.30j0zll
	_heading=h.7ydfepkv4psp
	_heading=h.1fob9te
	_heading=h.3znysh7
	_heading=h.ioecfsf4vz4t
	_heading=h.mmwh67yt9vdn
	_heading=h.ig3av1g221ik
	_heading=h.20l7sykqxrsv
	_heading=h.5edr5dwf0ixi
	_heading=h.9obzek4iktj3
	_heading=h.9w4v5mqzg5ds
	_heading=h.2et92p0
	_heading=h.tyjcwt
	_heading=h.3dy6vkm
	_heading=h.1t3h5sf
	_heading=h.lumfku9z06wj
	_heading=h.bnj2pfsdzl9m
	_heading=h.4d34og8
	_heading=h.l6pg3qjzvjqo
	_heading=h.2s8eyo1
	_heading=h.17dp8vu
	_heading=h.3rdcrjn
	_heading=h.gjdgxs
	_heading=h.gjdgxs
	_heading=h.gjdgxs

